16 Descent by Cyclic Isogeny

Let E,E be elliptic curves over a number field K, and ϕ:EE an isogeny of degree n.

Suppose E[ϕ^]n generated by TE(K). Then E[ϕ]μn as a Gal(K¯K)-module

Se(S,T).

Have a short exact sequence of Gal(K¯K)-modules

0μnEϕE0.

Get long exact sequence

   E (K )      E ′(K )        H1(K, μn)     H1 (K,E )


ϕδα∼=                           K∗∕(K ∗)n
(the is by Hilbert 90).

Theorem 16.1. Assuming that:

  • fK(E) and gK(E)

  • div(f)=n(T)n(0)

  • ϕf=gn

Then α(P)=f(P)(mod(K)n) for all PE;(K){0,T}.

Proof. Let Qϕ1P. Then δ(P)H1(K,μn) is represented by σσQQE[ϕ]μn.

e(σQQ,T)=g(σQQ+X)g(X)for any XEavoiding zeroes and poles of g=g(σQ)g(Q)pick X=Q=σ(g(Q))g(Q)=σf(P)nfn(P)

(ϕf=gn, f(P)=g(Q)n).

But

H1(K,μn)K(K)n(σxnxn)x

Hence α(P)=f(P)(mod(K)n).

16.1 Descent by 2-isogeny

E: y2=x(x2+ax+b)E: y2=x(x2+ax+b) b(a24b)0, a=2a, b=a24b. ϕ:EE(x,y)((yx)2,y(x2b)x2)ϕ^:EE(x,y)(14(yx)2,y(x2b)8x2)

E[ϕ]={0,T}, T=(0,0)E(K).

E[ϕ^]={0,T}, T=(0,0)E(K).

Proposition 16.2. There is a group homomorphism

E(K)K(K)2(x,y){xmod(K)2if x0bmod(K)2if x=0

with kernel ϕE(K).

Proof. Either: Apply Theorem 16.1 with f=xK(E), g=yxK(E).

Or: direct calculation – see Example Sheet 4.

αE:E(K)ϕ^E(K)K(K)2αE:E(K)ϕE(K)K(K)2

Lemma 16.3. 2rankE(K)=|ImαE||ImαE|4.

Proof. If AfBgC are homomorphisms of abelian groups, then there is an exact sequence

 0         ker(f)        ker(gf )       ker(g)


fg          coker(f)      coker(gf)      coker(g)   0
Since ϕ^ϕ=[2]E, we get an exact sequence

0E(K)[ϕ]2E(K)[2]ϕE(K)[ϕ]2E(K)ϕE(K)Im(αE)ϕ^E(K)2E(K)E(K)ϕ^E(K)Im(αE)0.

Therefore

|E(L)2E(K)||E(K)[2]|=|ImαE||ImαE|4.(1)

Mordell-Weil: E(K)Δ×r, where Δ is a finite group and r=rankE(K).

E(K)2E(K)Δ2Δ×(2)r.

E(K)[2]Δ[2].

Since Δ is finite, we have that Δ2Δ and Δ[2] have the same order, and therefore

|E(K)2E(K)||E(K)[2]|=2r.(2)

So we are done, by using (1) and (2).

Lemma 16.4. Assuming that:

  • K is a number field

  • a,bOK

Then Im(αE)K(S,2), where S={𝔭|b}.

Proof. We must show that x,yK, y2=x(x2+ax+b) and v𝔭(b)=0 then v𝔭(x)0(mod2).

Case v𝔭(x)<0: Lemma 9.1 gives that for some r1, v𝔭(x)=2r and v𝔭(y)=3r, so done.

Case v𝔭(x)>0: Then v𝔭(x2+ax+b)=0. So v𝔭(x)=v𝔭(y2)=2v𝔭(y).

Lemma 16.5. Assuming that:

  • b1b2=b

Then b1(K)Im(αE) if and only if
w2=b1u4+au2v2+b2v4(∗)

is soluble for u,v,wK not all zero.

Proof. If b1(K)2 or b2(K)2 then both conditions are satisfied. So we may assume b1,b2(K)2.

Now note b1(K)2Im(αE) if and only if there exists (x,y)E(K) such that x=b1t2 for some tK. This implies

y2=(b1t2)(b12t2+ab1t2+b)

hence

(yb1t)2=b1t4+at2+bb1=b2.

So () has solution (u,v,w)=(t,1,yb1t).

Conversely, if (u,v,w) is a solution to () then uv0 and (b1(uv)2,b1uwv3)E(K).

Now take K=.

Example. E: y2=x3x (a=0, b=1).

Im(αE)=1()2.

E: y2=x3+4x.

Im(αE)1,2()2.

b1=1w2=u44v4b1=2w2=2u4+2v4b1=2w2=2u42v4 The first and last lines are insoluble over (squares are non-negative). The middle line does have a solution: (u,v,w)=(1,1,2).

Therefore Im(αE)=2()2.

Hence 2rankE()=224=1, so rankE()=0.

So 1 is not a congruent number.

Example. E: y2=x3+px, p a prime which is 5 modulo 8.

b1=1w2=u4pv4

This is insoluble over , hence Im(αE)=p()2.

E: y2=x34px.

Im(αE)1,2,p()2.

Note: αE(T)=(4p)()2=(p)()2.

b1=2w2=2u42pv4b1=2w2=2u4+2pv4b1=pw2=pu44v4

Suppose the first line is soluble. Then without loss of generality u,v,w with gcd(u,v)=1. If p|u, then p|w and then p|v, contradiction. Therefore w22u40(modp). So (2p)=+1, which contradicts p5(mod8).

Likewise the second line has no solution since (2p)=1.

TODO

Example (Lindemann). E: y2=x3+17x.

Im(αE)=17()2.

E: y2=x368x.

Im(αE)1,2,17()2.

b1=2, w2=2u434v4.

Replacing w by 2w and dividing by 2 gives

C: 2w2=u417v4.

Notation. C(K)={(u,v,w)K3{0}satisfying equation above}, where (u,v,w)(λu,λv,λ2w) for all λK.

C(2) since 17(2)4.

C(17) since 2(17)2.

C() since 2.

Therefore C(v) for all places v of .

Suppose (u,v,w)C(). Without loss of generality say u,v,w, gcd(u,,v)=1 and w>0.

If 17|w then 17|u and then 17|v, contradiction

So if p|w then p17 and (17p)=+1. Therefore (p17)=(17p)=1 (using quadratic reciprocity). (If p is odd, also (217)=+1).

Therefore (w17)=+1. But 2w2u4(mod17), so 2(𝔽17)4={±1,±4}, contradiction.

So C()=, i.e. C is a counterexample to the Hasse Principle. It represents a non-trivial element of TS(E).

16.2 Birch Swinnerton Dyer Conjecture

Let E be an elliptic curve.

Definition (L(E,s)). Define

L(E,s)=pLp(E,s)

where

Lp(E,s)={(1apps+p12s)1if good reduction(1ps)1if split multiplicative reduction(1+ps)1if nonsplit multiplicative reduction1if additive reduction

where #(𝔽p)=1+pap.

Hasse’s Theorem implies |ap|2p, which shows that L(E,s) converges for Re(s)>32.

Theorem (Wiles, Breuil, Conrad, Diamon, Taylor). L(E,s) is the L-function of a weight 2 modular form, and hence has an analytic continuation to all of (and a function equation relating L(E,s)=L(E,2s)).

Conjecture (Weak Birch Swinnerton-Dyer Conjecture). ords=1L(E,s)=rankE().

(=r say).

Conjecture (Strong Birch Swinnerton-Dyer Conjecture). ords=1L(E,s)=rankE(), which we shall call r, and

lims11(s1)rL(E,s)=ΩERegE()|TS(E)|pcp(E)|E()tors|2,

where

Theorem (Kolyvagin). If ords=1L(E,s) is 0 or 1, then Weak Birch Swinnerton-Dyer holds, and also |TS(E)|<.

˙