5 Isogenies

Let E1,E2 be elliptic curves.

Definition (Isogeny). An isogeny ϕ:E1E2 is a nonconstant morphism with ϕ(0E1)=0E2 (by Theorem 2.8, a morphism is nonconstant if and only if surjective on K¯-points).

We say E1 and E2 are isogenous in this case.

Definition. Hom(E1,E2)={isogenies E1E2}{0}.

This is an abelian group under

(ϕ+ψ)(P)=ϕ(P)+ψ(P).

If E1ϕE2ψE3 are isogenies then ψϕ is an isogeny.

Tower Law implies deg(ψϕ)= deg (ϕ) deg (ψ).

Proposition 5.1. Assuming that:

  • 0n

Then [n]:EE is an isogeny.

Proof. [n] is a morphism by Theorem 4.4. We must show [n][0].

Assume charK2.

Case n=2: Lemma 4.5 implies E[2]E implies [2][0].

Case n odd: Lemma 4.5 implies 0TE[2]. Then nT=T0 which gives [n][0].

Now use [mn]=[m][n].

If charK=2, then could rpelace Lemma 4.5 with an explicit lemma about 3-torsion points.

Corollary 5.2. Hom(E1,E2) is a torsion free -module.

Theorem 5.3. Assuming that:

Then ϕ(P+Q)=ϕ(P)+ϕ(Q) for all P,QE1.

Proof (sketch). ϕ incudes

ϕ:Div0(E1)Div0(E2)PE1nPPPE1nPϕ(P)

Recall ϕ:K(E2)K(E1).

   K (E1)

normKm(aEp )
       2
Fact: If fK¯(E1) then

div(NK(E1)K(E2)f)=ϕ(divf).

So ϕ sends principal divisors to principal divisors.

Since ϕ(0E1)=0E2, the following diagram commutes:

      P              E1            E2             Q


ϕ∼=∼=ϕ∗    [(P )− (0E1)]    Pic0(E1)      Pic0(E2)        [(Q )− (0E2)]
ϕ a group homomorphism implies ϕ is a group homomorphism.

Lemma 5.4. Assuming that:

Then there exists a morphism ξ making the following diagram commute:
  E1      E2

   1       1
ϕxxξ12ℙ       ℙ
(xi= x-coordinate on a Weierstrass equation for Ei). Moreover if ξ(t)=r(t)s(t), r,sK[t] coprime, then
degϕ= deg ξ=max( deg (r), deg (s)).

Proof. For i=1,2. K(Ei)K(xi) is a degree 2 Galois extension, with Galois group generated by [1].

Theorem 5.3 implies that ϕ[1]=[1]ϕ.

So if fK(x2) then

[1]ϕf=ϕ[1]f=ϕf.

Therefore ϕfK(x1).

                    K (E1) = K (x1,y1)


   K (x1)


                    K (E2) = K (x2,y2)


2dd2eeggKϕξ (x2)
In particular, ϕ=ξ(x1) for some rational function ξ.

Tower Law implies degϕ= deg ξ.

Now K(x2)K(x1), x2ξ(x1)=r(x1)s(x1), r,sK[t] coprime.

We claim the minimal polynomial of x1 over K(x2) is

F(t)=r(t)s(t)x2K(x2)[t].

Check:

Therefore

degξ=[K(x1):K(x2)]= deg F=max( deg r, deg s).

Lemma 5.5. deg[2]=4.

Proof. Assume charK2,3 (the result is true even in the case of charK{2,3}, but we will only prove the simpler case).

E: y2=x3+ax+b=f(x).

If P=(x,y)E, then

x(2P)=(3x2+a2y)22x=(3x2+a)28xf(x)4f(x)=x4+f(x)

The numerator and denominator are coprime. Indeed, otherwise there exists 𝜃K¯ with f(𝜃)=f(𝜃)=0 and hence f has a multiple root (contradiction).

Now Lemma 5.4 implies deg[2]=max(4,3)=4.

Definition (Quadratic form in an abelian group). Let A be an abelian group. We say q:A is a quadratic form if

  • (i) q(nx)=n2q(x) for all n, xA.
  • (ii) (x,y)q(x+y)q(x)q(y) is -bilinear.

Lemma 5.6. q:A is a quadratic form if and only if it satisfies the parallelogram law:

q(x+y)+q(xy)=2q(x)=2q(y)x,yA.

Proof.

Theorem 5.7. deg:Hom(E1,E2) is a quadratic form.

Note. We define deg(0)=0.

For the proof we assume charK2,3. Write E2: y2=x3+ax+b.

Let P,QE2 with P,Q,P+Q,PQ0. Let x1,,x4 be the x-coordinates of the 4 points.

Lemma 5.8. There exists W0,W1,W2[a,b][x1,x2] of degree in x1 and of degree 2 in x2 such that

(1:x3+x4:x3x4)=(W0:W1:W2).

Proof. Two methods.

We show that if ϕ,ψHom(E1,E2), then

deg(ϕ+ψ)+ deg (ϕψ)2 deg (ϕ)+2 deg (ψ).

We may assume ϕ,ψ,ϕ+ψ,ϕψ0 (otherwise trivial, or use deg[1]=1, deg[2]=4).

ϕ:(x,y)(ξ1(x),)ψ:(x,y)(ξ2(x),)ϕ+ψ:(x,y)(ξ3(x),)ϕψ:(x,y)(ξ4(x),)

Lemma 5.8 implies

(1:ξ3+ξ4:ξ3ξ4)=((ξ1ξ2)2:).

Put ξi=risi, ri,siK[t] coprime.

(s3s4:r3s4+r4s4:r3r4)coprime=((r1s2r2s1)2:).(∗)

Therefore

deg(ϕ+ψ)+ deg (ϕψ)=max( deg (r3), deg (s3))+max( deg (r4), deg (s4))=max( deg (s3s4), deg (r3s4+r3s3), deg (r3r4))2max( deg (r1), deg (s1))+2max( deg (r2), deg (s2))=2deg(ϕ)+2 deg (ψ)(1)

Now replace ϕ,ψ by ϕ+ψ,ϕψ to get

deg(2ϕ)+ deg (2ψ)2deg(ϕ+ψ)+2 deg (ϕψ)4deg(ϕ)+4 deg (ψ)2deg(ϕ+ψ)+2 deg (ϕψ)2deg(ϕ)+2 deg (ψ)deg(ϕ+ψ)+ deg (ϕψ)(2)

(1) and (2) give that deg satisfies the parallelogram law, hence deg is a quadratic form.

This proves Theorem 5.7.

Corollary 5.9. deg(nϕ)=n2 deg (ϕ) for all n, ϕHom(E1,E2). In particular, deg[n]=n2.

Example 5.10. Let EK be an elliptic curve. Suppose charK2. Let 0TE(K)[2].

Without loss of generality E: y2=x(x2+ax+b), a,bK, b(a24b)0, and T=(0,0).

If P=(x,y) and P=P+T=(x,y) then

x=(yx)2ax=x2+ax+bxax=bxy=(yx)x=byx

Let

ξ=x+x+a=(yx)2η=y+y=yx(xbx)η2=(yx)2[(x+bx)24b]=ξ[(ξa)24b]=ξ(ξ22aξ+a24b)

Let E: y2=x(x2+ax+b), where a=2a, b=a24b. There is an isogeny

ϕ:EE(x,y)((yx)2:y(x2b)x2:1)     2        3       0       ord0E()         1           0       3       +30E(0:1:0)=0E

To compute the degree: (yx)2=x2+ax+bx (coprime numerator and denominator as b0). Lemma 5.4 gives degϕ=2.

We say ϕ is a 2-isogeny.