14 Dual isogenies and the Weil pairing

Let K be a perfect field and EK an elliptic curve.

Proposition 14.1. Assuming that:

  • ΦE(K¯) be a finite Gal(K¯K)-stable subgroup

Then there exists an elliptic curve EK and a separable isogeny ϕ:EE defined over K, with kernel Φ, such that every isogeny ψ:EE with Φψ factors uniquely via ϕ:
 E                E′′


ψϕ∃ unique  E ′

Proof. Omitted (see Silverman, Chapter III, Proposition 4.12).

Proposition 14.2. Assuming that:

  • ϕ:EE an isogeny of degree n

Then there exists a unique isogeny ϕ^:EE such that ϕ^ϕ=[n].

Proof. Case ϕ is separable: We have |kerϕ|=n, hence kerϕE[n]. Apply Proposition 14.1 with ψ=[n].

Case ϕ is inseparable: omitted.

Uniqueness: Suppose ψ1ϕ=ψ2ϕ=[n]. Then (ψ1ψ2)ϕ=0, so deg(ψ1ψ2) deg ϕ=0. Then deg(ψ1ψ2)=0, hence ψ1=ψ2.

Remark.

Lemma 14.3. Assuming that:

  • ϕ,ψHom(E,E)

Then ϕ+ψ^=ϕ^+ψ^.

Proof.

Remark. In Silverman’s book he proves Lemma 14.3first, and uses this to show deg:Hom(E,E) is a quadratic form.

Notation.

sum:Div(E)Enp(P)formal sumnP(P)addusinggrouplaw

Recall

E Pic0(E)P[(P)(0)]

Therefore sumD[D] for all DDiv0(E).

We deduce:

Lemma 14.4. Assuming that:

  • DDiv(E)

Then D0 if and only if degD=0 and sumD=0E.

We will now discuss Weil pairing.

Let ϕ:EE be an isogeny of degree n, with Dual isogeny ϕ^:EE. Assume charKn (hence ϕ, ϕ¯ separable).

We define the Weil pairing

eϕ:E[ϕ]×E[ϕ^]μn.

Let TE[ϕ]. Then nT=0, so there exists fK¯(E) such that

div(f)=n(T)n(0).

Pick T0E(K¯) with ϕ(T0)=T. Then

ϕ(T)ϕ(0)=PE[ϕ](P+T0)PE[ϕ](P)

has sum

nT0=ϕ^ϕT0=ϕ^T=0.

So there exists gK¯(E) such that

div(g)=ϕ(T)ϕ(0).

Now

div(ϕf)=ϕ(divf)=n(ϕ(T)ϕ(0))=div(gn)

Therefore ϕf=cgn for some cK¯.

Rescaling f, we can say without loss of generality c=1, i.e. ϕf=gn.

For SE[ϕ] we get τS(divg)=(divg) so τSg=ζg for some ζK¯, i.e. ζ=g(X+S)g(X) is independent of choice of XE(K¯).

Now

ζn=g(X+S)ng(X)n=f(ϕ(X+S))f(ϕ(X))=1

since SE[ϕ]. Hence ζμn.

We define

eϕ(S,T)=g(X+S)g(X).

Proposition 14.5. e is bilinear and non-degenerate.

Proof.

We’ve shown E[ϕ]Hom(E[ϕ],μn). It is an isomorphism since #E[ϕ]=#E[ϕ^]=n.

Remark.

Corollary 14.6. Assuming that:

  • E[n]E(K)

Then μnK.

Proof. Let TE[n] have order n. Non degeneracy of en implies that there exists SE[n] such that en(S,T) is a primitive n-th root of unity, say ζn.

Then

σ(ζn)=σ(en(S,T))=en(σS,σT)=ζn

for all σGal(K¯K). So ζnK.

Example. There does not exist E with E()tors(3)2.

Remark. In fact, en is alternating, i.e. en(T,T)=1 for all TE[n].

(This implies en(S,T)=en(T,S)1).