13 Unramified and totally ramified extensions of local fields

Let LK be a finite separable extension of non-archimedean local fields. Corollary 11.6 implies

[L:K]=eLKfLK.(∗)

Lemma 13.1. Assuming that:

Then
  • (i) fMK=fLKfML
  • (ii) eMK=eLKfML

Proof.

  • (i) fMK=[kM:k]=[kM:kL][kL:k]=fMLfLK.
  • (ii) (i) and ().

Definition 13.2 (Unramified / ramified / totally ramified). The extension LK is said to be:

  • unramified if eLK=1 (equivalently fLK=[L:K]).

  • ramified if eLK>1 (equivalently fLK<[L:K]).

  • totally ramified if eLK=[L:K] (equivalently fLK=1).

From now on in this course: if unspecified LK is a finite separable extension of (non-archimedean) local fields. Also, all local fields that we consider from now on will be non-archimedean.

Theorem 13.3. Assuming that:

Then there exists a field K0, KK0L and such that

Moreover [L:K0]=eLK, [K0:K]=fLK and K0K is Galois.

Proof. Let k=𝔽q, so that kL=𝔽qf, fLK=f. Set m=qf1, []:𝔽qfL the Teichmüller map for L.

Let ζm:=[α] for α a generator of 𝔽qf×. ζm a primitive m-th root of unity. Set K0=K(ζm)L, then K0K is Galois and has residue field k0=𝔽q(α)=kL. Hence fLK0=1, i.e. LK0 is totally ramified.

Let res:Gal(K0K)Gal(k0k) be the natural map. For σGal(K0K). We have σ(ζm)=ζm if σ(ζm)ζmmodm (since μm(K0)μm(k0) by Hensel’s Lemma version 1). Hence res is injective. Thus |Gal(K0K)||Gal(k0k)|=fK0K, so [K0:K]=fK0K.

Hence res is an isomorphism, and K0K is unramified.

Theorem 13.4. Assuming that:

  • k=𝔽q

  • n1

Then there exists a unique unramified LK of degree n. Moreover, LK is Galois and the natural Gal(LK)Gal(kLk) is an isomorphism. In particular, Gal(LK)FrobLK is cyclic, where FrobLK(x)=xqmodmL for all xOL.

Proof. For n1, take L=K(ζm) where m=qn1.

As in Theorem 13.3:

Gal(LK)Gal(kLK)Gal(𝔽qn𝔽q).

Hence Gal(LK) is cyclic, generated by a lift of xxq.

Uniqueness: LK of degree n unramified. Then Teichmüller gives ζmL, so L=K(ζm).

Corollary 13.5. LK a finite Galois extension. Then res:Gal(LK)Gal(kLk) is surjective.

Proof. res factorises as

Gal(LK)Gal(K0K)Gal(kLk).

Definition 13.6 (Inertial subgroup). The inertial subgroup is

ILK=ker(Gal(LK)Gal(kLk)).

Definition 13.7 (Eisenstein polynomial). f(x)=xn+an1xn1++a0OK[x] is Eisenstein if vK(ai)1 for all i, and vK(a0)=1.

Fact: f(x) Eisenstein implies f(x) irreducible.

Theorem 13.8.

Proof.

  • (i) [L:K]=e=eLK. Let
    f(x)=xm+am1xm1++a0OK[x]

    the minimal polynomial for πL. Then me. Since vL(K×)=e, we have vL(aiπi)emode, for i<m. Hence these terms have distinct valuations. As

    πLm=i=0m1aiπLi.

    we have

    m=vL(πLm)=min0im1(i+evK(ai))

    hence vK(ai)1 for all i.

    Hence vK(a0)=1 and m=e. Thus f(x) is Eisenstein and L=K(πL). For yL, we write y=i=0e1πLibi, biK. Then

    vL(y)=min0ie1(i+evK(bi)).

    Thus

    yOLvL(y)0vK(bi)0iyOK[πL]
  • (ii) Let f(x)=xn+an1xn1++a0 is Eisenstein and e=eLK. Thus vL(ai)e and vL(a0)=e. If vL(α)0, we have
    vL(αn)<vL(i=0n1aiαi)

    hence vL(α)>0. For i0, vL(aiαi)>e=vL(a0). Therefore

    vL(αn)=vL(i=0n1aiαi)=vL(a0)=e.

    Hence nvL(α)=e. But n=[L:K]e, so n=e and vL(α)=1.

13.1 Structure of Units

Let [K:]<, e:=eKp, π a uniformiser in K.

Proposition 13.9. Assuming that:

  • r>ep1

Then exp(x)=n=0xnn! converges on πrOK and induces an isomorphism
(πrOK,+)(1+πrOK,×).

Proof.

vK(n!)=evp(n!)=e(nsp(n))p1Example Sheet 1e(n1p1)

For xπrOK and n1,

vK(xnn!)nre(n1)p1=r(n1)(rep1)>0

Hence vK(xnn!) as n. Thus exp(x) converges.

Since vK(xnn!)r for all n1, exp(x)1+πrOK.

Consider log: 1+πrOKπrOK.

log(1+x)=n=1(1)n1nxn

which converges as before.

Recall identities in [[X,Y]]:

exp(X+Y)=exp(X)exp(Y)exp( log (1+X))=1+Xlog(exp(X))=X

Thus exp;(πrOK,+)(1+πrOK,×) is an isomorphism.

K any local field: UK:=OK×, πOK uniformiser.

Definition 13.10 (s-th unit group). For s, the s-th unit group UK(s) is defined by

UK(s)=(1+πsOK,×).

Set UK(0)=UK. Then we have

UK(s)UK(s1)UK(0)=UK.

Proposition 13.11.

  • (i) UK(0)UK(i)(k×,×) (kOKπ)
  • (ii) UK(s)UK(s+1)(k,+) for s1

Proof.

  • (i) Reduction modulo π. OK×k× is surfective with kernel 1+πOK=UK(1).
  • (ii) f;UK(s)k, 1+πsxxmodπ.
    (1+πsx)(1+πsy)=1+πs(x+y+πsxy).

    x+y+πsxyx+ymodπ, hence f is a group homomorphism, surjective with kernel UK(s+1).

Remark. Let [K:p]<. Proposition 13.9, ?? implies that there exists finite index subgroup of OK× isomorphism to (OK,+).

Example. p, p>2, e=1, take r=1. Then

p×(p)××(1+pp)(p1)×px(xmodp,x[xmodp])

p=2, take r=2.

2×(4)××(1+p2p)2×2x(xmod4,x𝜀(x))

where

𝜀(x)={+1x1(mod4)1x1(mod4)

So:

p×(p×)2{2if p>2(2)2if p=2