14 Higher Ramification Groups

Let LK be a finite Galois extension of local fields, and πLOL a uniformiser.

Definition 14.1 (s-th ramification group). Let vL be a normalised valuation in OL. For s1, the s-th ramification group is

Gs(LK)={σGal(K)|vL(σ(x)x)s+1 xOL}.

Remark. Gs only changes at integers.

Gs, s1 used to define upper numbering.

Example.

G1(LK)=Gal(LK)G0(LK)={σGal(LK)|σ(x)xmodπL xOL}=ker(Gal(LK)Gal(kLk))=ILK

Note. For s0,

Gs(LK)=ker(Gal(LK)Aut(OLπLs+1OL))

hence Gs(LK) is normal in G1.

GsGs1G1=Gal(LK).

Theorem 14.2.

  • (i) For s1,
    Gs={σG0|vL(σ(πL)πL)s+1}.
  • (ii) n=0Gn={1}.
  • (iii) Let s0. Then there exists an injective group homomorphism
    GsGs+1UL(s)UL(s+1)

    induced by σσ(πL)πL. This map is independent of the choice of πL.

Proof. Let K0L be a maximal unramified extension of K in L. Upon replacing K by K0, we may assume that LK is totally ramified.

  • (i) Theorem 13.8 implies OLOK[πL]. Suppose vL(σ(πL)πL)s+1. Let xOL, then x=f(πL), f(X)OK[X]. σ(x)x=σ(f(πL))f(πL)=f(σ(πL))f(πL)=(σ(πL)πL)g(πL)

    for some g(X)OK[X], using the fact that XnYn=(XY)(Xn1++Yn1). Thus

    vL(σ(x)x)=vL(σ(πL)πL)+vL(g(πL))0s+1.
  • (ii) Suppose σGal(LK), σ1. Then σ(πL)πL, because L=K(πL) and hence vL(σ(πL)πL)<. Thus σGs for some s0 by (i).
  • (iii) Note: for σGs, s0,
    σ(πL)πL+πLs+1OL

    hence

    σ(πL)πL1+πLsOL=UL(s).

    We claim

    φ:GsUL(s)UL(s+1)σσ(πL)πL

    is a group homomorphism with kernel Gs+1. For σ,τGs, let τ(πL)=uπL, uOL×. Then

    στ(πL)πL=σ(τ(πL))τ(πL)τ(πL)πL=σ(u)uσ(πL)πLτ(πL)πL

    But σ(u)u+πLs+1OL since σGs. Thus σ(u)uUL(s+1) and hence

    στ(πL)πLσ(πL)πLτ(πL)πLmodUL(s+1).

    Hence φ is a group homomorphism. Moreover,

    ker(φ)={σGs|σ(πL)πLmodπLs+1}=Gs+1.

    If πL=aπL is another uniformiser, aOL×. Then

    σ(πL)πL=σ(a)aσ(πL)πLσ(πL)πLmodUL(s+1).

Corollary 14.3. Gal(LK) is solvable.

Proof. By Proposition 13.11, Theorem 14.2 and Theorem 13.4, for s1,

GsGs+1a subgroup{Gal(kLk)if s=1(kL×,×)if s=0(kL,+)if s1

Thus GsGs+1 is solvable for s1. Conclude using Theorem 14.2(ii).

Let characteristick=p. Then p|G0G1| and |G1|=pn. Thus G1 is the unique (since normal) Sylow p-subgroup of G0=ILK.

Definition 14.4. G1 is called the wild inertial group, and G0G1 is called the tame quotient.

Suppose LK is finite separable. Say LK is tamely ramified if characteristickeLK. Otherwise it is wildly ramified.

Theorem 14.5. Assuming that:

  • [K:p]<

  • LK finite

  • DLK=(πδ(LK))

Then δ(LK)eLK1, with equality if and only if tamely ramified. In particular, LK unramified if and only if DLK=OL.

Proof. Example Sheet 3 shows DLK=DLK0DK0K. Suffices to check 2 cases:

  • (i) LK unramified. Then ?? gives that OL=OK[α], for some αOL with kL=k(a¯).

    Let g(X)OK[X] be the minimal polynomial of α. Since [L:K]=[kL:k], we have that g¯(X)k[X] is the minimal polynomial of a¯. g¯(X) separable and hence g(α)0(modπ)L. Theorem 12.8 implies DLK=(g(α))=OL.

  • (ii) LK totally ramified. Say [L:K]=e, OL=OK[πL], πL a root of
    g(X)=Xe+i=0e1aiXiOK[X]

    is Eisenstein. Then

    g(πL)=eπLe1e1+i=1e1iaiπLi1vLe.

    Thus vL(y(πL))e1. Equality if and only if pe.

Corollary 14.6. Suppose LK is an extension of number fields. Let POL, POK=𝔭. Then e(P𝔭)>1 if and only if P|DLK.

Proof. Theorem 12.9 implies DLK=PDLPK𝔭. Then use e(P𝔭)=eLPK𝔭 and Theorem 14.5.

Example.

  • K=p, ζpn a primitive pn-th root of unity. L=p(ζpn). The pn-th cyclotomic polynomial is

    Φpn(X)=Xpn1(p1)+Xpn1(p2)++1p[X].

    See Example Sheet 3.

  • Φpn(X) irreducible (hence Φpn(X) is the minimal polynomial of ζpn).

  • Lp is Galois, totally ramified of degree pn+1(p1).

  • π:=ζpn1 a uniformiser in OL OL=p[ζpn1]=p[ζpn].

  • Gal(Lp)(pn)× (abelian). σmm where σm(ζpn)=ζpnm.

    vL(σm(π)π)=vL(ζpnmζpn)=vL(ζpnm11).

    Let k be maximal such that pk|m1. Then ζpnm1 is a primitive pnk-th root of unity, and hence ζpnm11 is a uniformiser π in L=p(ζpnm1). Hence

    vL(ζpnm11)=eLL=eLpeLp=[L:p][L:p]=pn1(p1)pnk1(p1)=pk.

    Theorem 14.2(i) implies that σmGi if and only if pki+1. Thus

    Gi{(pn)×i0(1+pk)pnpk11<ipk1(1ki+1){1}pn11<i.