4 Introduction to Fourier Restriction

Theorem (Hausdorff-Young inequality). Assuming that:

  • 1p2

  • 1p+1q=1

Then
∥^f∥q ≤ ∥f∥p.

Proof. The inequality is true for p=1, q= and for p=2, q=2 the inequality is true since we have equality (Plancherel).

For values in between we can interpolate.

Are there any other (p,q) for which

∥f^∥q ≲ ∥f∥p?                                  (∗)

We saw that 1p2 was necessary (translations / modulations, Khinchin’s inequality).

Scaling: Plug in fλ(x)=f(λx) which is L-normalised (fλ=f). Then fλ^(ξ)=λnf^(λ1ξ) which is L1-normalised (fλ^1=f^1).

              ∫                   ∫
(LHS  of (∗))q =   |^fλ(ξ)|qdξ = λ−nq+n  |^f(ξ)|qdξ.
               ℝn
              ∫                 ∫
          p            p     − n       p
(RHS  of (∗)) = ℝn |fλ(x)| dx = λ   |f(x)| dx.
So we need for all λ>0:
 −n+nq ^     − np
λ     ∥f∥q ≲ λ  ∥f∥p.
So we need n+nq=np, i.e. 1p+1q=1.

Classical questions

What is Cp,q the smallest constant such that f^qCp,qfp?

Which functions f satisfy f^qfp=Cp,q?

2014:

∥^f∥q ≤ Cp,q∥f ∥p − distp(f,maximisers (Gaussian)).
Fourier restriction asks which (p,q) permit estimates f^Lq(R)fLp(n) (R is the restricted frequency set, Rn).

Example. R=B1(0)n, unit ball : Basically, sitll governed by Hausdorff-Young inequality.

Example. R=B1(0){xn=0} (measure 0 subset of n).

RR(pq) means

                           n
∥^f∥Lq(ℛ ) ≲ ∥f∥Lp(ℝn)   ∀f : ℝ → ℂ Schwartz
Always: RR(1) true for all R.

In the second example, only this trivial statement is true (i.e. RR(pq) is false for all other values for p,q).

Let R=Sn1 be the unit sphere in n. Consider

∥^f∥Lq(Sn−1) ≲ ∥f∥Lp(ℝn)
where Lq(Sn1) uses the usual surface measure dσ on Sn1.

Notation.

^^ˇx↦→− fx(x)       f^(x)        f(x)       f(x)
    ◟◝◜◞       ◟◝◜◞        ◟◝◜◞       ◟◝◜◞
   ∈𝒮(ℝn)      ∈𝒮(ℝn)      ∈𝒮(ℝn)     ∈ 𝒮(ℝn)
We may call ˇ the “inverse Fourier transform”.

Let φCc(n), -valued, 12 on B1(0), with support in B2(0).

May also assume ˇφ is -valued, ˇφ1 on Bc(0). ˇφ bounded, |ˇφ(x)|m(|x|2+1)mm. |ˇφ(x)| behaves like χB1(0) in Lp.

PIC

Consider dilates fR(x)=ˇφ(R1x)e2πixvr, R1.

Frequency side |fR^(ξ)|RnχBR1(0)(x) (L1-norm).

PIC

∫
     |^fR(ξ)|qdσ(ξ) ∼   RnqR −(n− 1)  .
 Sn−1              →σ◟(B-−◝1◜(n)∩S◞n−1)
                       R
BR1(n)Sn1 cap of radius R1. Spacial side |fR(x)|χBR(0)(x) (in L-norm).

PIC

height 1, n|fR(x)|pdxRn.

Rnn1qRnp, nn1qnp.

Consider: gR(x)=eixwrˇφ(R1x1,,R1xn1,R2xn).

Frequency: |gr^(ξ)||cylinder|1χcylinder(ξ). |cylinder|1| (R1R1R2)1=Rn+1.

PIC

∫
     |^gR(ξ)|qdσ(ξ) ∼ R (n+1)qσ (cap of radius R−1) = R(n+1)q−(n−1).
 Sn−1

Spatial side: |gR(x)|χcylinder(x) (L-norm).

PIC

|gR(x)|p=Rn1+2=Rn+1.

Rn+1n1qRn+1q, n+1n1qn+1p. Implies B.

On Monday, we will build examples h such that h^ sees all of Sn1.

R=Sn1Rn.

Consider the statement

∥^f∥ q n−1 ≲ ∥f∥ p n .
   L(S   )     L (ℝ )
(recall that we called this RSn1(pq)).

Fix φCc(n), φχB1(0). For computing Lp norms, |φ^|χBc(0).

Wave packet function with localised spatial and frequency behaviour.

Last time: fR(x)=eixvRˇφ(R1x1,,R1xn1,R2xn).

Frequency: |fR^(ξ)|

PIC

Sn1|fR^|qdσ

|-------------------|
n + 1− n-−-1 ≤ n+-1-|
---------q-------q---

Spatial: |fR(x)|

PIC

1|fR|p

Note: sphere near n looks like (ξ1,112|ξ|2), Sn1suppfR^cap of radius R1.

PIC

Naive attempt: gR(x)=Rnˇφ(Rx)

Frequency: |gR^(ξ)|

PIC

Sn1|gR^(ξ)|qdξ1

Spatial: |gR(x)|

PIC

|gR|pRnRnp.

Deduce: 1Rnp+n, so

|-----|
-p ≥-1|
(trivial).

|gR^|1 on Sn1 made gR^Lq(Sn1) easy to compute.

Could we improve things?

Could think about R1: then gR^Lq(Sn1)1, gRp1. This is more efficient, but we can’t take a limit. So not so useful.

Build a function H(x) which satisfies |H^(ξ)|1 on Sn1.

Let {𝜃} be a maximal collection of R1-spaced points on Sn1 (#{𝜃}Rn1).

PIC

For each 𝜃, let A𝜃1:nn be an affine map which sends

         −1         −1    −2                              n− 1
B1(0) → R   × ⋅⋅⋅ × R  × R    ellipsoid centered at 𝜃, tangent to S  at 𝜃.
Define φ𝜃=φA𝜃, H(x)=𝜃ˇφ𝜃(x).

H^(ξ)=𝜃φ𝜃(ξ)1 on Sn1 (actually on R2-neighbourhood of Sn1).

Sn1|H^(ξ)|qdσ1.

H(x)=𝜃ˇφ𝜃(x).

|φ𝜃(x)| Frequency:

PIC

|ˇφ𝜃(x)| Spatial:

PIC

esssuppH𝜃esssuppˇφ𝜃.

PIC

“bush of tubes”

Rn1 many R××R×R2 tubes in R1-separated directions

∫              ∫  ||               ||p
    |H (x)|pdx =    ||∑     ˇφ (x)    ||dx
  ℝn            ℝn|| 𝜃    ◟-𝜃◝◜ ◞   ||
                      ℂ- valued function

PIC

Compute

n|𝜃χT𝜃(x)2|p2=n|𝜃χT𝜃(x)|p2=munder∫   |∑     |p
    ||   χT𝜃||2
◟BR---◝◜----◞ (Rn1) p 2 Rn +

                                                    ∫       |∑      |p
                                                            ||   χT𝜃||2
                                                    ◟RR2∖BR-◝◜-------◞ ()

Consider overlap of T𝜃 on λSn1 (λ(R,R2)).

Average overlap on λSn1:

  ∫     ∑              ∑  ∫                  ∑
−          χT𝜃 ∼ λ −(n−1)        χT𝜃 ∼ λ−(n−1)   Rn−1 = λ−(n− 1)R2(n−1).
   λSn−1 𝜃              𝜃  λSn−1              𝜃

PIC

Not too hard to check that the number of active T𝜃 on λSn1 is λ(n1)R2(n1).

Now calculate:

            ∫          |      |p2
       ∑               ||∑     ||
(∗) ∼      2 λ<|x|<2λ   ||   χT𝜃||    dx.
     R<λ<R             ◟-𝜃-◝◜---◞p
                    [λ−(n−1)R2(n−1)]2λn

     −(n+1)p  2n    (n− 1)p2  n
1 ≲ R      [R   +R      R  ].
Two cases: either R2n dominates or the other term dominates. So p2nn+1.