5 Equivalent Versions of Fourier Restriction

Searching for (p,q) for which

∥^f∥ q  n−1 ≤ Cp,q,n∥f∥Lp(ℝn).
   L (S  )

Reminder: RSn1(pq) means

                                     n
∥f^∥Lq(Sn−1) ≤ Cp,q,n∥f∥Lq(ℝn)   ∀f ∈ 𝒮(ℝ ).

Conjecture (Restriction Conjecture). RSn1(pq) if and only if n+1n1qn+1p and p<2nn+1.

First proved for S12 by Fefferman (1970) and Zygmund (1974).

Special things happen in 2, classical harmonic analysis techniques apply.

Same conjecture for RPn1(pq), where

  n−1        2    n
P    = {(ξ,|ξ| ) ∈ ℝ : |ξ| < 1}.
f^Lq(Pn1)q=|ξ|<1|f^(ξ,|ξ|2)|qdξ.

PIC

For n3, open and active!

Restriction theory can be used to deduce continuum incidence geometry estimates.

Surprisingly, we can go the other way too (very recent progress, whereas the above direction has been well-known since at least the 90s).

Equivalent formulations of RPn1(pq)

Dual version is called “Fourier extension”:

                        ||                   ||
  ^                     ||∫      ^    2      ||
∥f∥Lq(Pn−1) =    sq′upn−1 ||  |ξ|<1  f(ξ,|ξ|)g(ξ)dξ||.
             ∥gg∥∈Lq′(Pn−1)=1  ξ∈ℝn−1
               L (P  )
(1q+1q=1). The integral equals:

Math input error

Call the last inequality RPn1(qp).

Local, dual version: allows us to work with functions, F.T.

For any R1, any BRn, we have

(∫        ′)p1′    1( ∫      ′  ) 1q′-
     |f(x)|p    ≲  Rq    |^f(ξ)|qdξ
  ℝn
for all fS(n) with suppf^NR1(Pn1).

Call this RPn1,loc(qp).

RPn1(qp)Rpn1,loc(qp). First thing bounds Eg, while secound thing bounds f when we have suppf^NR1(Pn1).

Let fS(n), suppf^NR1(Pn1). Try to express f in trems of ext. op.

Math input error        ∫    ( ∫               ) p′′-
  −1 p′−1                 ′ q′ ′  q
(R   )    I −1   |ξ′|<1|gξn (ξ )| dξ    d ξn
◟---------R-------◝◜-----------------◞ () using RPn1(q p) Goal is to bound this last expression by
   p′∫    ∫            ′
R− q           |gξn(ξ′)|qdξ′d ξn
    ◟IR−1-|ξ′|<1-◝◜-----------◞
         ∥^f∥Lq′(N   (Pn−1))
               R−1
Lucy case: pq<1, i.e. 1<qp. Then
      − p′+1∫
(∗) ≤ R
            IR−1

                        1
∫   H ölder’s   1− 1( ∫  s) s
 A h  ≤   |A|  s   Ah    ,
s1 (actually since h approximately constant on A)

RPn1(qp)RPn1,loc(qp) continued.

Spatial: x,f(x),Eg(x)

∫-----------|
|   |f(x)|p′dx|
-ℝn----------
∫         ′
   |Eg (x)|pdx
 ℝn

PIC

Frequency ξ:

PIC

g(ξ,|ξ|2)=g(ξ), suppf^NR1(Pn1),

∫               ′
          |^f(ξ)|qdξ
 𝒩R−1(𝒫n−1)
∫       ′ q′ ′
  ′  |g(ξ )|d ξ.
 |ξ|<1

                                                     ′
∫         ′       (∗)     ′  ∫    ( ∫           ′   )pq′
    |f(x)|pdx ≤ ⋅⋅⋅≤  R−(p−1)            |gξn(ξ′)|qdξ′   dξn.
 BR                          IR−1   |ξ′|<1

Aiming for

          (                     ) p′
      − p′- ∫    ∫         ′ q′  ′ q′
(∗) ≤ R q         ′   |gξn(ξ)| dξ    .
            IR−1 |ξ|<1

Lucky case: pq1.

                                                                ′
   Hölder’s inequality in ξn    ′         p′(∫    ∫            ′     ) pq′
(∗)        ≤         R−(p−1)|IR−1|1− q′            |gξn(ξ′)|q dξ′dξn
                                      IR−1 |ξ′|<1
R(p1)(R1)1pq=Rpq (1=1q+1q)

Unlucky case: pq>1. Hölder’s inequality goes in the wrong direction:

∫           (∫    )1
        1− 1s     s s
 Ah ≤ |A |     A h
for all s1, h0.

This is equality if h is constant on A.

PAUSE THIS.

Useful Harmonic Analysis tool

The locally constant property.

Convolution: Let f,gS(n). Define fgS(n) by

         ∫                 ∫
f ∗ g(x ) = ℝn f(x − y)g(y)dy = ℝn f(Y)g(x− y)dy.
See Young’s convolution:
∥f ∗g∥Lr ≤ ∥f∥p∥g∥q
when 1+1r=1p+1q.

Example. g=χB (B is the unit ball in n),

          ∫
f ∗ χB(x) = y∈B f(x− y)dy
RHS is “average value of f on B(x)”.

fχB is approximately constant on balls of radius 1”.

Support property: suppf=A, suppg=B, suppfgA+B={a+b:aA,bB}.

Convolution and Fourier Transform: fg^=f^g^.

Locally constant property: Let fS(n), suppf^B1(0). Then for any unit ball Bn and any xB,

            ∫
∥f∥L∞(B′) ≲m    |f|(x− y)----1-2-mdy.
              ℝn         (1+ |y|)

1(1+|y|2)m is 1 on |y|1.

PIC

Digesting f0.

For any unit interval In, xI,

          ∫
∥f ∥ ∞ ′ ≤        f(x− y)dy.
   L (I)   (− 12,12)

Suppose this:

PIC

LHS has to be constant.

          ∫
∥f ∥L∞(I′) ≲ (    )f(x− y)dy.
            − 12,12

PIC

        (∗)∫
∥f∥L∞(I′)≲        f (x − y)dy
            (− 12,12)

Lemma (Locally constant property). Assuming that:

  • fS(n)

  • suppf^B1(0)

Then for any unit ball B1n and any xB,
            ∫
∥f∥ ∞  ′ ≲      |f|(x− y)----1----dy.
   L (B ) m   ℝn         (1+ |y|2)m

The proof of this fact is more important than the statement – we will be using the strategy in future.

Proof of locally constant property. Let fS(n), suppf^B1(0). Let φCc(n) such that φ1 on B1(0), suppφB2(0).

By Fourier inversion:

    ˇ    ˇ      ˇ
f = (f^) = (^fφ) = (^f)∗ ˇφ = f ∗φˇ.
Let x0,xB1 (unit ball in n).

Math input error
Returning to RPn1(qp)RPn1,loc(qp)

∫        ′     ∫         ′
    |f (x)|pdx ≲    |fφBR |p dx
 BR             BR
where φBRS(n) satisfies φBR1 on BR, suppφBR^BR1(0).

̂fφBR =         ◟^f◝◜◞        ∗ φ◟^B◝R◜◞ (ξ)
       R−1 neighbourhood of 𝒫n−1 R−1 ball
supported in 2R1-neighbourhood of Pn1.

Repeat steps of proof:

BR|f(x)|pdxR(p1)IR1(|ξ|<1|hξn(ξ)|qdξ)pqdξn

PIC

       |------------------|
       |^       ′  ′2     |
h(ξn) =-f ∗-^φBR(ξ,|ξ|-+-ξn)