6 Tube incidence implications of Fourier restriction

Last time: LOCALLY CONSTANT PROPERTY (think of it more as “heuristic”).

If suppf^B1 then

What if suppf^Bλ(0) (so |f|const on λ1-balls)?

     ˇ
f = (^fφBλ) = f ∗ ˇφBλ,
where φBλ(ξ)=φB1(λ1ξ).
         ∫                       ∫
φˇ  (x ) =   e2πix⋅ξφ   (λ −1ξ)dξ = λn    e2πi(λx)⋅ξφ  (ξ)dξ = λnφˇ (λx).
  Bλ      ℝn       B1             ℝn         B1           B1
|ˇφB1| is approximately averaging over a 1-ball. |ˇφBλ| is approximately averaging over λ1-balls.

What about suppf^Bλ(v)?

Same thing happens, because eixsomethingf will have Fourier support in Bλ(0), and taking absolute values means we don’t notice the eixsomething (modulation).

Returning to RPn1(qp)RPn1,loc(qp).

∫             ∫
   |f(x)|p′dx ≲    |f (x)φBR (x )|p′dx
 BR            BR
φBR(x)S(n), |φBR|1 on BR, suppφBR^BR1(0).

Last lecture

     (                              )                              ′
∫     ∫               ′  ′2     q′  ′  (∗)  −1 1− p′(∫        q′ ) pq′
     (  |ξ′|<1  |^f ∗ ^φBR (ξ ,|ξ |+ ξn)| dξ) ≲ (R  )  q′     n |^f(ξ)| dξ   .
 IR−1   ξ′∈ℝn−1                                       ξ∈ℝ

Can choose φBR^ such that

Case 1: pq1. LHS of () (using Hölder) is

|IR1|1pq(IR1|ξ|<1(|f^||φBR^|1q+1q(ξ,|ξ|2+ξn))qdξdξn)pq|IR1|1pq(n(|f^||φBR^|(ξ))qddξ)pq(|f^|q(ξη)|φBR^|(η)dη)1qmunder(∫      q) 1q
    |φ^BR |q
◟----◝◜----◞ 1 (Holder) |IR1|1p q (nn|f^|q (ξ η)|φBR^|(η)dηdξ) p q |IR1|1p q (n|f^|q(ξ)dξ) p q

Case 2: pq>1. Use P12 for intuition.

PIC

Imagine a function g which is approximately constant on each R1 cube Q. Think of g as g=QgQ.

     (                 ) p′-
∫      ∫        2        q′
            g(t,t + ξ2)dt    dξ2.
 IR−1   |t|<1
Note
∫        2
 |t|<1g(t,t + ξ2)dt ∼ gQ.
Therefore,
∫
     g(t,t2 + ξ2)dt ∼ C
 |t|<1
if |ξ2|cR1. (C for all ξ2IR1).

|(P+(0,ξ2))Q|R1 for |ξ2|cR1.

|IR1|1pq+pqCpq=|IR1|1pq(|IR1|C)pq(R1|t|<1g(t,t2+ξ2)dtdξ2)pq

Important: locally constant property means we didn’t need pq<1, like before.

Make the intuition rigorous.

                                                         p′
                       (∫                           ′  ) q′-
LHS of (∗) ≲ |IR−1| max       (|^f|∗|^φBR|(ξ′,|ξ′|2 + ξn))qdξ′
                 ξ2∈IR−1  |ξ′|<1
Consider the integral:

|ξ|<1(|f^||φBR^|(ξ,|ξ|2+ξn))qdξ=|ξ|<1(n|f^|(η)|φBR^|((ξ,|ξ|2+ξn)η)dη)qdξ|ξ|<1(n|f^|q(η)|φBR^|((ξ,|ξ|2+ξn)η)dη)dξSame pointwise HolderRn(R1)n1n|f^|q(η)dηR1n|f^|q(R1)1Rpq(|f^|q)pq

˙