2 Exponential sums in Lp

Recall: studying f(x)=ξRe(ξx). When R does not have (linear) structure, expect |f(x)||R|12 (“sqrt cancellation”) in an appropriate sense (in Lp), more than when R is structured.

Linear R f(x)=n=1Ne(nx) vs convex R g(x)=n=1Ne(n2x).

Have

[0,1]|f(x)|2dx=N=[0,1]|g(x)|2dx.

Have |f(x)|N on [0,cN1], and |g(x)|N on [0,cN2].

PIC

L2 does not distinguish f,g. L does not distinguish. However, 2<p< does.

What about 1p2? We don’t usually study this range because the estimates tend to be trivial / not interesting.

Focus on 2<p<. Preduct size of

[0,1]|f|p.

Square root cancellation lower bound:

N=[0,1]|f|2Hölder’s([0,1]|f|2p2)2p(1)

Np2[0,1]|f|p.

Constant integral lower bound:

[0,1]|f|p[0,cN1]|f|pNpN1[0,1]|g|p[0,cN2]|g|pNpN2

|f|pNp2+Np1, |g|pNp2+Np2.

Note that for the f bound, Np1 is bigger than Np1 (as long as p>2), so the constant integral dominates!

For g, if 2p4, the square root cancellation dominates, but for p>4 the constant integral takes over.

Assuming:

Theorem 2.1. - p>2 - bn Then:

|nbne(nx)|pNp21bn2p.

Proof. Consider: n=1Nbne(nx), bn.

[0,1]|nbne(nx)|pdxnbne(nx)p2[0,1]|nbne(nx)|2dx(N12bn2)p2bn22CS=Np21bn2p

Note that this is sharp when bn1.

n=1Nbne(n2x). Focus on p=4.

[0,1]|nbne(n2x)|4dx=n1n2n3n4bn1bn2bn3¯bn4¯[0,1]e((n12+n22n32n42)x)dx.

The integral vanishes unless n12n32=n42n22.

Number Theory lemma: If m, then

# divisors of mlogm.

Follows from unique prime factorisation.

Warning. The above lemma is false.

See correction later.

For fixed n1,n3,

#{(n2,n4):n12n32=(n4+n2)(n4n2)}=:Sn1,n3 log N.

Hence

[0,1]|nbne(n2x)|4dxn1n3|bn1bn3||(n2,n4)Sn1,n3bn2bn4¯|(logN)bn24

We will now use to mean up to powers of logN.

2<p<4: 1p=𝜃2+1𝜃4, 𝜃[0,1], h=nbne(n2x), hph2𝜃h41𝜃bn2𝜃bn21𝜃bn2.

p4:

[0,1]|h|php4bn24CS(N12bn2)p4bn24Np22bn2p.

Assuming:

Theorem 2.2. - 2>p Then:

|nbne(n2x)|pdx(1=Np22)bn2p.

Sharp by bn1.

Positive take away: estimates are sharp, proofs are elementary. Easy to think of sharp examples.

Number Theory counting idea shows:

[0,1]2|u(x,t)|6dxdtbn26u(x,t)=|n|Nnbne(nx+n2t)[0,1]3|u(x,t)|4dxdtbn24u(x,t)=|n|Nn2bne(nx+|n|2t)

Sharp, 6,4=pcrit.

Strichartz estimate for periodic Schrödinger equation, observed by Bourgain in 1990s.

Negatives: on 𝕋3 pcrit=103, but this technique can only work on even integer values of p.

𝕋1, 𝕋2 only sharp Strichartz estimates per Schrödinger until 2015!

2015: Bourgain-Demeter proved (l2,Lp) sharp decoupling estimate. Gives sharp Strichartz estimate for Schrödinger in 𝕋d for all d.

Proved earlier:

N2[0,N2]|nNe(n2N2x)|pdx(1+Np22)bn2p.

(where nN means Nn2N).

Conjecture:

[0,N2]|nNbne(anx)|pdx(1+Np22)bn2p

an[0,1], an+1an1N, an+2an+1(an+1an)1N2.

Example: {an}{n3N3}n=N2N.