10 Elliptic Curves over Number Fields: The torsion subgroup

[K:β„š]<∞, Eβˆ•K an elliptic curve.

Notation. 𝔭 a prime of K (i.e. a prime) ideal in OK).

K𝔭 is the 𝔭-adic completion of K, valuation ring O𝔭.

k𝔭=OKβˆ•π”­ residue field.

Definition (Good reduction (prime)). 𝔭 is a prime of good reduction for Eβˆ•K if Eβˆ•K𝔭 has good reduction.

Lemma 10.1. Eβˆ•K has only finitely many primes of bad reduction.

Proof. Take a Weierstrass equation for E with a1,…,a6∈OK. E non-singular implies that 0β‰ Ξ”βˆˆOK.

Write (Ξ”)=𝔭α1⋯𝔭rΞ±r (factorisation into prime ideals).

Let S={𝔭1,…,𝔭r}. If π”­βˆ‰S then v𝔭(Ξ”)=0. Hence Eβˆ•K𝔭 has good reduction.

Therefore {badΒ primesΒ forΒ E}βŠ‚S, hence is finite. β–‘

Remark. If K has class number 1 (e.g. K=β„š) then we can always find a Weierstrass equation for E with a1,…,a6∈OK which is minimal at all primes 𝔭.

Basic group theory: If A is a finitely generatead abelian group then Aβ‰…{finiteΒ group}Γ—β„€r. We call r the β€œrank”, and {finiteΒ subgroup} is the torsion subgroup.

Lemma 10.2. E(K)tors is finite.

Proof. Take any prime 𝔭. We saw that E(K𝔭) has a finite index subgroup A (say) with Aβ‰…(O𝔭,+).

In particular, A is torsion free

E(K)torsβ†ͺE(K𝔭)torsβ†ͺE(K𝔭)A⏟finite.β–‘

Lemma 10.3. Assuming that:

Then reduction modulo 𝔭 gives an injective group homomorphism
E(K)[n]β†ͺαΊΌ(k𝔭).

Proof. PropositionΒ 9.5 gives that E(K𝔭)β†’αΊΌ(k𝔭) is a group homomorphism, with kernel E1(K𝔭).

CorollaryΒ 8.5 and π”­βˆ€n gives that E1(K𝔭) has no n-torsion. β–‘

Example. Eβˆ•β„š: y2+y=x3βˆ’x, Ξ”=βˆ’11.

E has good reduction at all p≠11.

p 2 3 5 7 11 13







#αΊΌ(𝔽p) 5 5 5 5 βˆ’ 10

LemmaΒ 10.3 gives:

{#(β„š)tors|5β‹…2aforΒ someΒ aβ‰₯0#E(β„š)tors|5β‹…3bforΒ someΒ bβ‰₯0

Hence #(β„š)tors|5.

Let T=(0,0)∈E(β„š). Calculation gives 5T=0. Therefore E(β„š)torsβ‰…β„€βˆ•5β„€.

Example. Eβˆ•β„š: y2+y=x3+x2, Ξ”=βˆ’43

p 2 3 5 7 11 13







#αΊΌ(𝔽p) 5 6 10 8 9 19

LemmaΒ 10.3 gives:

{#E(β„š)tors|5β‹…2aforΒ someΒ aβ‰₯0#E(β„š)tors|9β‹…11bforΒ someΒ bβ‰₯0

Therefore E(β„š)tors={0}.

Therefore P=(0,0) is a point of infinite order.

In particular, E(β„š) is infinite.

Example. ED: y2=x3βˆ’D2x=f(x). Dβˆˆβ„€ square-free, Ξ”=26D6. If p∀2D, then

#αΊΌD(𝔽p)=1+βˆ‘xβˆˆπ”½p((f(x)p)+1).

If p≑3(mod4) then since f is odd,

(f(βˆ’x)p)=(βˆ’f(x)p)=(βˆ’1p)(f(x)p)=βˆ’(f(x)p).

Hence

#αΊΌD(𝔽p)=p+1.
ED(β„š)torsβŠƒ{0,(0,0),(Β±D,0)}β‰…(β„€βˆ•2β„€)2.

Let m=#ED(β„š)tors.

We have 4|m|p+1 forr all sufficiently large (p∀2mD) primes p with p≑3(mod4). Hence m=4 (otherwise get contradiction to Dirichlet’s theorem on primes on arithmetic progressions).

So

rank⁑ED(β„š)β‰₯1βŸΊβˆƒβ‘x,yβˆˆβ„š,yβ‰ 0∧y2=x3βˆ’D2x⟺LectureΒ 1DΒ isΒ aΒ congruentΒ number

Lemma 10.4. Assuming that:

  • Eβˆ•β„š is given by a Weierstrass equation with a1,…,a6βˆˆβ„€

  • 0β‰ T=(x,y)∈E(β„š)tors

Then
  • (i) 4x,8yβˆˆβ„€
  • (ii) If 2|a1 or 2Tβ‰ 0 then x,yβˆˆβ„€

Proof.

Example. y2+xy=x3+4x+1, (βˆ’14,18)∈E(β„š)[2].

Theorem 10.5 (Lutz Nagell). Assuming that:

  • Eβˆ•β„š: y2=x3+ax+b, a,bβˆˆβ„€

  • 0β‰ T=(x,y)∈E(β„š)tors

Then x,yβˆˆβ„€ and either y=0 or y2|(4a3+27b2).

Proof. LemmaΒ 10.4 gives that x,yβˆˆβ„€.

If 2T=0 then y=0. Otherwise 0β‰ 2T=(x2,y2)∈E(β„š)tors.

LemmaΒ 10.4 gives x2,y2βˆˆβ„€. But

x2=(fβ€²(x)2y)2βˆ’2x

hence y|fβ€²(x).

E non-singular gives that f(X) adn fβ€²(X) are coprime, so f(X) and fβ€²(X)2 are coprime. Therefore there exists g,hβˆˆβ„š[X] satisfying

g(X)f(X)+h(X)fβ€²(X)2=1.

Doing this and clearing denominators gives

(3X2+4a)fβ€²(X)2βˆ’27(X3+aXβˆ’b)f(X)=4a3+27b2.

Since y|fβ€²(x) and y2=f(x), we get y2|(4a3+27b2). β–‘

Remark. Mazur showed that if Eβˆ•β„š is an elliptic curve then

E(β„š)torsβ‰…{β„€βˆ•nβ„€1≀n≀12,nβ‰ 11β„€βˆ•2β„€Γ—β„€βˆ•2nβ„€1≀n≀4

Moreover, all 15 possibilities occur.