Contents

1Estimating Primes
1.1Asymptotic Notation
1.2Partial Summation
1.3Arithmetic Functions and Dirichlet convolution
1.4Dirichlet Series
2Elementary Estimates for Primes
2.1Merten’s Theorems
2.2Sieve Methods
2.3Selberg Sieve
3The Riemann Zeta Function
3.1Partial fraction approximation of ζ
3.2Zero-free region
Index

What is analytic number theory?

What kind of problems are studied?

A variety of problems about integers, especially primes.

Key feature: To show that a set (of primes) is infinite, want to estimate the number of elements x.

Definition. Define

π(x)=|{primes x}|=px1.

Euclid showed: limxπ(x)=.

Theorem (Prime number theorem).

limxπ(x) log xx=1.

π(x)xlogx. (Conjectured: Legendre, Gauss. Proved: Hadamard, de la Vallée Poussin)