2 Elementary Estimates for Primes

Recall from Lecture 1:

2.1 Merten’s Theorems

Theorem 2.1 (Merten’s Theorem). Assuming that:

  • x3

Then
  • (i) px log pp= log x+O(1)
  • (ii) px1p= log log x+M+O(1 log x) (for some M)
  • (iii) px(11p)=c+o(1) log x (for some c>0)

Remark. Can show c=eγ.

Proof.

2.2 Sieve Methods

Definition (Sieve problem). Let P. Let

P(z)=pPpzp,

and let A. Denote

S(A,P,z)=|{nA:(n,P(z))=1}|.

Problem: Estimate S(A,P,z).

Note that if A[x2,x],

S(A,,x12)=|A|S(A,,x13)=|A({p1p2:p1p2>x13})|

Sieve hypothesis: There exists a multiplicative g:[0,1] and Rd such that

|{nA:n0(modd)}|=g(d)|A|+Rd

for all square-free d (no repeated prime factors).

Example.

Lemma. We have

S(A,P,z)=d|P(z)μ(d)|Ad|.

Proof. Recall that

𝟙n=1=(μ1)(n)

(since μ is the inverse of 1). Hence,

S(A,P,z)=nA𝟙(n,P(z))=1=nAd|P(z)d|nμ(d)=d|P(z)μ(a)|Ad|

Example. Let

π(x,z)=|{nx:(n,P(z))=1}|.

Let P=. Let A=[1,x]. Then

|Ad|=xd+O(1).

By the previous lemma,

π(x,z)=S(A,,z)=d|P(z)μ(d)(xd+O(1))=xd|P(z)μ(d)d+O(d|P(z)|μ(d)|1)=xd|P(z)μ(d)d+O(2π(z))P(z)=p1pπ(2)=xpz(1+μ(p)p1)+O(2π(2))fundamental theorem of arithmetic=c+o(1)logzx+O(2z)Merten’s theorem, for some c>0

For 2zlogx,

π(x,z)=c+o(1)logzx.

Theorem (Sieve of Erastothenes – Legendre). Assuming that:

  • A[1,x]

  • 2zx

  • Assume the Sieve Hypothesis

Then S(A,P,z)=|A|p2pP(1g(p))+O(x12( log x)122 log x4 log z(dxd|P(z)|Rd|2)12+|A|e log x log zpzpP(1+g(p))e)

Proof. Recall from previous lecture that

S(A,P,z)=d|P(z)dxμ(d)|Ad|(since Ad= for d>x)=d|P(z)dxμ(d)g(d)|A|+O(dxd|P(z)|Rd|)(sieve hypothesis)=|A|d|P(z)μ(d)g(d)+O(dxd|P(z)|Rd|+|A|d|P(z)d>xg(d))=|A|pzpP(1g(p))+O(dxd|P(z)|Rd|+|A|d|P(z)d>xg(d))

We estimate the first error term using Cauchy-Schwarz:

dxd|P(z)|Rd|(dxd|P(z)|Rd|2)12(dxd|P(z)1)12.

Note that if d|P(z), d>x12, then

ω(d)logx12logz,

(ω(d) – number of distinct prime factors of d), since zω(d)dx12.

Hence, 2ω(d)2logx2logz, d|P(z), d>x12.

Now we get

dxd|P(z)12logx2logzdxd|P(z)2ω(d)=τ(d)2logx2logzdxτ(d)2logx2logzxlogx

(the last step is by Dirichlet’s divisor problem: dxτ(d)=(1+o(1))x log x).

Substituting this in, the first error term becomes as desired.

Now we estimate the second error term. We have

d|P(z)d>xg(d)x1logzd|P(z)g(d)d1 log z(since d>x in the sum: Rankin’s trick)=x1logzpzpP(1+g(p)p1 log zz1 log z=e)x1logzpzpP(1+eg(p))x1 log z=e log x log zpzpP(1+g(p))e(1+ey(1+y)e)

Combining the error terms, the claim follows.

Example. Take A=[1,x], P=. Then g(d)=1d, Rd=O(1), so the sieve gives us

S(A,P,z)=π(x,z)=(x+O(1))pz(11p)+O(x12(logx)122 log x4 log zx12+(x+O(1))e log x log zpz(1+1p)e)

By Merten’s Theorem,

pz(11p)=C+o(1)logzpz(1+1p)pz(11p)1=(1C+o(1))logz

Hence,

π(x,z)=c+o(1)logz+O(x(logx)122 log x4 log z+xe log x log z( log z)e).

Hence, for 2zexp( log x10 log log x),

π(x,z)=c+o(1)logzx.

This asymptotic in fact holds for zxo(1).

In particular, the Erastothenes-Legendre sieve gives

π(x)π(x,z)+zxlogxlog log x

for z=exp( log x10 log log x). Not quite the Chebyshev bound π(x)xlogx.

2.3 Selberg Sieve

asymptotes good upper bound for primes
Erastothenes-Legendre
Selberg

Theorem 2.2 (Selberg sieve). Assuming that:

  • z2

  • A finite

  • P

  • Assume the sieve hypothesis

  • h:[0,) be the multiplicative function supported on square-free numbers, given on the primes by

    h(p)={g(p)1g(p)pP0pP

Then
S(A,P,z)|A|dzh(d)+dz2d|P(z)τ3(d)|Rd|.

Sieve hypothesis: There is a multiplicative g:[0,1] and Rd such that

|Ad|=g(d)|A|+Rd

for all square-free d1.

Proof. Let (ρd)d be real numbers with

ρ1=1,ρd=0,d>z(∗)

Then,

𝟙(n,P(z))=1(d|nd|P(z)ρd)2.

(If (n,P(z))=1, get 1ρ otherwise use 0x2).

Summing over nA,

S(A,P,z)=nA𝟙(n,P(z))=1nA(d|nd|P(z)ρd)2=d1d2|P(z)ρd1ρd2nA[d1,d2]|n1=|A|d1,d2|P(z)ρd1ρd2g([d1,d2])+d1,d2|P(z)ρd1ρd2R[d1,d2]E(sieve hypothesis)

([m,n] means lcm(m,n)).

We first estimate E:

Emaxk|ρk|2d1,d2|P(z)|R[d1,d2]|=maxk|ρk|2dzkd|P(z)d1,d2[d1,d2]=d|Rd|(d=[d1,d2])

We have

d1,d2d=[d1,d2]1=lzd1,d2d=ld1d2(d1,d2)=11(l=(d1,d2),d1=d1l,[d1,d2]=ld1d2)τ3(d)

Therefore

Edzzd|P(z)τ3(d)|Rd|maxk|ρk|2.

Now it suffices to prove that there is a choice of (ρd)d satisfying () such that

Claim 1: d1,d2|P(z)ρd1ρd2g([d1,d2])=1dzh(d).

Claim 2: |ρk|1 for all k.

Proof of claim 1:

We have, writing k=(d1,d2), di=dik,

d1,d2|P(z)ρd1ρd2g([d1,d2])=k|P(z)μ(k)2d1,d2|P(z)k(d1,d2)=1ρkd1ρkd2g(kd1d2)=k|P(z)μ(k)2g(k)d1,d2|P(z)k(d1,d2)=1ρkd1ρkd2g(d1)g(d2)(multiplicativity)

We have

𝟙(d1,d2)=1=c|d1c|d2μ(c)

(since μ1=I) so the previous expression becomes

k|P(z)μ(k)2g(k)c|P(z)kμ(c)d1,d2|P(z)d10(mod()c)d20(modc)ρkd1ρkd2g(d1)g(d2)=k|P(z)μ(k)2g(k)c|P(z)kμ(k)(d|P(z)kd0(modc))2=k|P(z)μ(k)2g(k)1c|P(z)kμ(c)(d|P(z)ckρckdg(ckd))2=nzh(m)1(d|P(z)d0(modn)ρdg(d))2

(multiplicativity, d=cd, m=ck, d=md) since 1h=μ2gμ (check on primes 1h(p)=1g(p)1).

Now we get

d1,d2|P(z)ρd1ρd2g([d1,d2])=mzh(m)1ζm2

where

ζm=d|P(z)d0(modm)ρdg(d).

Want to minimise this subject to ().

We need to translate the condition ρ1=1. Note that

mzm0(modc)μ(m)ζm=d|P(z)ρdg(d)m|dc|mμ(m)m|dcμ(c)μ(m)=μ(d)𝟙d=e=μ(e)ρeg(e)

Hence,

ρe=μ(e)g(e)m2m0(modc)μ(m)ζm.

Now,

ρ1=1=mzμ(m)ζm.

By Cauchy-Schwarz, we then get

(mzh(m)1ζm2)(mzμ(m)2h(m))(mzμ(m)ζm)2=1.

Hence

mzh(m)1ζm21mzμ(m)2h(m)=1mzh(m).

Equality holds for Tm=h(m)G(z), where G(z)=mzh(m). We now check that with these ζm, ρd=0 for d>z.

Note that

ρc=μ(c)g(c)G(z)mzm(modc)μ(m)h(m).

Hence, ρc=0 for c>2.

This proves Claim 1.

Now we prove Claim 2 (|ρc|1).

Note that any m has at most one representation as m=em, where e|d, (m,d)=1 (for any d).

Now,

G(z)c|dmzc(m,d)=1h(cm)=c|dh(c)mzc(m,d)=1h(m)c|dh(e)mzd(m,d)=1h(m)

Now,

ρd=μ(d)2h(d)g(d)G(z)mzd(m,d)=1μ(m)h(m).

Substituting the lower bound for G(z),

|ρd|h(d)g(d)c|dh(e)=1,

since 1h=hg.

Lemma 2.3. Assuming that:

  • z3

  • g:[0,1] multiplicative

  • for some K,A we have

    pzg(p) log pκ log z+A.

Then
1mzh(m)2pz1(eκ+1)(1g(p)),

where h is defined in terms of g as in Selberg’s sieve.

Proof. Note that for any c(0,1),

mzh(m)mzm|P(zc)h(m)=G(z,c).

Then

pzcpP(1g(p))1G(z,c)=pzcpP(1+h(p))mzm|P(zc)h(m)=m>zm|P(zc)h(m)

By Rankin’s trick,

1pzc(1g(p))G(z,c)=pzc(1g(p))m>zm|P(zc)h(m)pzc(1g(p))zλ log zm|P(zc)h(m)mλ log z(for any λ>0)=pzc(1g(p))eλpzc(1+h(p)pλ log z)=eλpzc(1g(p)+g(p)pλ log zeλexp(pzc(pλ log z1)λ log z( log p)pλ log z)exp(λ+λ log zpzcg(p)( log p)pλ log z)(1+tet)exp(λ+cecλλκ+λecλA log z)

Choose c=1λ and λ=eκ+1 to get the claim.

The Brun-Titchmarsh Theorem

Theorem 2.4 (Brun-Titchmarsh Theorem). Assuming that:

  • x0, y2

  • 𝜀>0 and y is large in terms of 𝜀

Then
π(x+y)π(x)(2+𝜀)ylogy.

Remark. We expect

π(x+y)π(x)=(n+o(1))ylogx

in a wide range of y (e.g. yx𝜀 for some 𝜀>0 fixed). The prime number theorem gives this for yx. The Brun-Titchmarsh Theorem gives an upper bound of the expected order for yx𝜀.

Proof. Apply the Selberg sieve with A=[x,x+y], P=. Note that for any d1,

|{aA:a0(modd)}=yd+O(1).

Hence, the sieve hypothesis holds with g(d)=1d, Rd=O(1).

Now, the function h in Selberg sieve is given on primes by

h(p)=g(p)1g(p)=1p1=1φ(p),

where φ is the Euler totient function. In general,

h(d)=μ(d)21φ(d)

(since φ is multiplicative). Now, for any z2, Selberg sieve yields

S(A,,z)ydzμ(d)2φ(d)+O(dz2τ3(d)).

By Problem 11 on Example Sheet 1, the error term is O(z2(logz)2).

Take z=y12𝜀10. Then

z2(logz)2(y12𝜀10)2( log y)2y1𝜀20

(for yy0(𝜀)). We estimate

dzμ(d)2φ(d)=dzμ(d)2ddφ(d)=dzμ(d)2dp|d(1+1p+1p2+)=pp1=pφ(p)nz1n

since any nz has at least one representation as

n=dp1a1pkak,

where dz is square-free and pi|d are primes and a10.

We have proved

nz1n= log z+O(1)(1110) log z

for zz0(𝜀).

Putting everything together gives us

π(x+y)π(x)S(A,,z)+zy(1𝜀10)logz+z+y1𝜀20(2+𝜀)ylogy

for yy0(𝜀).