7 Łoś’s Theorem and Consequences

Question, how does φ(jJMjU) relate to [φ(Mj)jJ]?

Theorem 7.1 (Los Lemma). Assuming that:

  • L a language

  • φ an L-formula

  • (Mj)jJ=(Mj,Ij)jJ a non-empty family of L-structures

  • U an ultrafilter on J

  • M=(jJMjU,IU)

Then
φ(M)=[φ(Mj)jJ].

Proof (sketch). Induction on

(essentially Proposition 5.8).

Corollary 7.2. Assuming that:

  • σ an L-sentence

  • (Mj)jJ a family of non-empty L-structures

  • U an ultrafilter on J

  • M=jJMjU

Then Mσ if and only if {jJ:Mjσ}U.

Proof.

Theorem 7.3 (Compactness – ultraproduct proof). Assuming that:

  • L a language

  • Σ a set of L-sentences

Then Σ is consistent if and only if every finite subset of Σ is consistent.

Proof.