7 Łoś’s Theorem and Consequences

Question, how does φ(jJMjU) relate to [φ(Mj)jJ]?

Theorem 7.1 (Los Lemma). Assuming that:

  • L a language

  • φ an L-formula

  • (Mj)jJ=(Mj,Ij)jJ a non-empty family of L-structures

  • U an ultrafilter on J

  • M=(jJMjU,IU)

Then
φ(M)=[φ(Mj)jJ].

Proof (sketch). Induction on

  • Complexity of terms

  • Formulas

(essentially Proposition 5.8).

Corollary 7.2. Assuming that:

  • σ an L-sentence

  • (Mj)jJ a family of non-empty L-structures

  • U an ultrafilter on J

  • M=jJMjU

Then Mσ if and only if {jJ:Mjσ}U.

Proof.

  • Suppose Mσ. Then σ(M) is a non-empty subset of M0, i.e. its the empty tuple (). So {[(σ(Mj))jJ]}={()}. So
    {jJ:()σ(Mj)}={jJ:Mjσ}.

    Since the LHS is in U, we get that the RHS is too.

  • Similar

Theorem 7.3 (Compactness – ultraproduct proof). Assuming that:

  • L a language

  • Σ a set of L-sentences

Then Σ is consistent if and only if every finite subset of Σ is consistent.

Proof.

  • Clear.
  • Assume every finite subset of Σ is consistent. Let J be the set of all finite subsets of Σ. For each jJ, let
    ĵ={kJ:jk}.

    Let B={ĵ:jJ} and let

    F={AJ:BB,BA}.

    Exercise: F is a filter.

    Let U be an ultrafilter extending F. For each jJ, let Mjj. Let M=(jJMjU).

    Claim: MΣ.

    Let σΣ. Then {σ}J and {σ}^{jJ:Mjσ}.

    So {jJ:Mjσ}U, so Mσ.

    So: σΣ,Mσ.