5 Ultraproducts

Definition 5.1. Let (Aj)jJ be a family of sets (J), with Aj for all jJ. Take J to be an ultrafilter on J, and define the following equivalence relation on jJAj:

(aj)jJ(bj)jJiff{jJ:aj=bjU}.

Proposition 5.2. The relation defined above is an equivalence relation on jJAj.

Proof. Symmetric / reflexive is obvious.

Transitivity: let (aj)jJ,(bj)jJ,(cj)jJjJAj, and suppose (aj)jJ(bj)jJ and (bj)jJ(cj)jJ.

Let

Fab={jJ:aj=bj}Fbc={jJ:bj=cj}Fac={jJ:aj=cj}

Note Fab,FbcU. Also,

FabFbcU={jJ:aj=bj=cj}Fac

hence FacU, i.e. (aj)jJ(cj)jJ.

Definition 5.3. Let (Aj)jJ be a non-empty family of non-empty sets and U an ultrafilter on J.

  • Write jJAjU to be jJAj (where is defined as in Definition 5.1).

  • [(aj)jJ]U is the equivalence class of (aj)jJ with respect to .

  • Let BjAj for every jJ. Then

    [(Bj)jJ]U={[(aj)jJ]jJAjU:{jJ:ajBj}U}.

Is the third item well-defined?

Proposition 5.4. Assuming that:

  • (Aj)jJ, (Bj)jJ satisfy BjAj for all j

  • (aj)jJ,(bj)jJjJAj satisfying (aj)jJ(bj)jJ

Then {jJ:ajBj}U if and only if {jJ:bjBj}U.

Proof. Know (aj)jJ(bj)jJ. Define

U={jJ:aj=bj}UV={jJ:ajBj}W={jJ:bjBj}

Note UVW and UWV.

If VU then UVU so WU. Similarly, if WU then VU.

So [(Bj)jJ] is well-defined.

Proposition 5.5. Assuming that:

  • (Aj)jJ, U, as usual.

  • Bj,CjAj

Then
  • (1) [(Bj)jJ][(Cj)jJ]=[(BjCj)jJ].
  • (2) [(Bj)jJ][(Cj)jJ]=[(BjCj)jJ].
  • (3) [(Bj)jJ][(Cj)jJ]=[(BjCj)jJ].

Proof. Example Sheet 1.

Definition 5.6. Let (Aj)jJ, U (ultrafilter on J), as before, and let n.

For each jJ, suppose BjAjn. Define

[(Bj)jJ]={([(aj1)jJ],,[(ajn)jJ])(jJAjU)n:{jJ:(aj1,,ajn)Bj}U}(jJAjU)n

Note. If n=0, then we get that

Bj={()}[(Bj)jJ]={()}

Definition 5.7. Let n>0, k{1,,n}. Define:

  • πk(x1,,xn)=(x1,,xk1,xk+1,,xn).

  • For X a set of n-tuples,

    πk(X)={(x1,,xk1,xk+1,,xn):(x1,,xn)X}.

Proposition 5.8. Assuming that:

  • (Aj)jJ, U, as usual

  • n

  • for each j we have Bj,CjAjn

Then
  • (1) [(Bj)jJ][(Cj)jJ]=[(BjCj)jJ]
  • (2) [(Bj)jJ][(Cj)jJ]=[(BjCj)jJ]
  • (3) [(Bj)jJ][(Cj)jJ]=[(BjCj)jJ]
  • (4) If n>0, k{1,,n} then
    πk([(Bj)jJ])=[(πk(Bj))jJ].

Proof. (1) - (3): Straightforward. See Example Sheet.

(4): Let n>0, k{1,,n}. Let

α=([(aj1)jJ],,[(ajk1)jJ],[(jjk+1)jJ],,[(ajn)jJ])πk([(Bj)jJ]).

So we have some [(ajk)jJ] such that

([(aj1)jJ],,[(ajn)jJ])[(Bj)jJ].

So U={jJ:(aj1,,ajn)Bj}U.

Consider

V={jJ:(aj1,,ajk1,ajk+1,,an)π(Bj)}U.

So α[(πk(Bj))jJ], i.e. πk[(Bj)jJ][(πk(Bj))jJ].

Showing [(πk(Bj))jJ]π([(Bj)jJ]) is similar (do it as an exercise).

Definition 5.9. Suppose Aj=A for each jJ. Then we call jJAjU an ultrapower of A, and write AU.

If BA, we write [B] for [(B)jJ].

Theorem 5.10. Assuming that:

  • AU be as above

  • J=

  • {C:C is finite}U

  • n

  • for each m, let BmAn satisfying:

    • (1) [Bm] m
    • (2) [Bk][Bm] for all m,k with mk

Then m[Bm].

Proof. Omitted. For n=1, this is a potential presentation topic.