3 Expansion and Cheeger inequality

Assume G is d-regular. Write G=(V,E).

PIC

Definition 3.1 (Expansion). Given a d-regular graph G and SV, the expansion of S is

Φ(S):=e(S,VS)d|S|.

Note that 0Φ1, for example because

Φ(S)=xU(S)yN(x)(yS).

Definition 3.2 (Edge expansion). The (edge) expansion of a cut (S,VS) is defined as

Φ(S,VS):=max{Φ(S),Φ(VS)}=e(S,VS)dmin{|S|,|V|}.

Definition 3.3 (Edge expansion of a graph). The edge expansion of a graph is

Φ(G):=minSVSVΦ(S,VS)=minSV0<|S|<|V|2Φ(S).

Theorem 3.4 (Cheeger’s inequality). Assuming that:

  • G be d-regular

Then
λ2(L~G)2Φ(G)2λ2(L~G).

Consider 𝟙S:V, where 𝟙S(x)=1 if xS and 𝟙S(x)=0 otherwise. Then

QL(𝟙S)=xy(𝟙S(x)𝟙S(y))2=e(S,VS)qL~(𝟙S)=e(S,VS)d|S|=Φ(S)

Recall

λ2(L~G)=min dim W=2maxfWf0qL~G(f).

We pick W=span{𝟙S,𝟙VS}. Note

λ2(L~G)maxα,β(α,β)(0,0)qL~G(α𝟙S+β𝟙VS)maxα,β2max{qL~(G)(α𝟙S),qL~G(β𝟙VS)}

Lemma 3.5. Assuming that:

  • M is symmetric positive semi-definite

  • f,g=0

Then
qM(f+g)2max{qM(f),qM(g)}.

Proof. Let λi, φi such that f=iλiφi and g=iβiφi. Then

qM(f+g)=iλi(αi+βi)2f+g2iλi(2αi2+2βi2)f2+g2.

Then

qM(f+g)2(iλiαi2+iλiβi2f2+g2)=2(qM(f)f2+qM(g)g2f2+g2)2max{qM(f),qM(g)}

Proof of left inequality in Cheeger’s inequality. λ22max{Φ(S),Φ(VS)}=2Φ(S,VS). Then minimise over all S, to get λ22Φ(G).

Recall that

Φ(S)=qL~G(𝟙S)

and

Φ(G)=minSV1|S||V|2qL~G(𝟙S).
Fiedler’s Algorithm

Input: G,φ:V.

Output: The cut.

Running time: O(|V|log|V|+|E|).

Lemma 3.6. Assuming that:

  • ψ:V

  • ψ,1=0

  • let (S,VS)=Fiedler(G,ψ)

Then
Φ(S,VS)2qL~G(ψ).

If ψ:V, call a cut ({x:ψ(x)τ)},{x:ψ(x)<τ}) a threshold cut for ψ.

Lemma 3.7. Assuming that:

  • φ:V

  • φ,1=0

Then there is ψ:V0 such that qL~G(ψ)qL~G(ψ), |suppψ|=|{x:ψ(x)>0}||V|Q and any threshold cut for ψ is a threshold cut for φ.

Lemma 3.8. Assuming that:

  • ψ:V0

Then there is 0<tψ such that
Φ({x:ψ(x)t})2qL~G(ψ).

Proof of Lemma 3.7. If φ,1=0 then

qL~G(φ+α1)=QL~G(φ+α1)φ+α12=QL~G(φ)φ2+α2QL~G(φ)φ2=qL~G(φ)

Let m be the median of φ.

|{xV:φ(x)>m}||V|2|{xV:φ(x)<m}||V|2

φ¯=φm1, qL~G(φ¯)qL~G(φ). Let φ¯=φ¯+φ¯, where φ¯+,φ¯:V0. So

φ¯(x)={φ¯+(x)φ(x)>mφ¯(x)φ(x)<m0φ(x)=m.

Note φ¯,φ¯+=0.

Claim: either φ¯+ or φ¯ suffices.

qL~G(φ)qL~G(φ¯)=qL~G(φ¯+φ¯)=xy(φ¯+(x)φ¯(x)φ¯+(y)+φ¯(y))2φ¯+φ¯2=xy((φ¯+(x)φ¯+(y))(φ¯(x)φ¯(x))2φ¯+2+φ¯2xy(φ¯+(x)φ¯+(y))2+(φ¯(x)φ¯(y))2φ¯+2+φ¯2=qL~G(φ¯+)φ¯2+qL~G(φ¯)φ¯2φ¯2+φ¯2

Proof of Lemma 3.8. Assume ψ=1. We find 0<t1. Choose t at random, such that t2Unif([0,1]). Let

St={xV:ψ(x)>t}.

Then

𝔼|St|=x(xSt)=x(ψ(x)2>t2)=xψ(x)2.

Have

Φ(St)=e(St,VSt)d|St|.

Also, can calculate:

𝔼d|St|=dxψ(x)2𝔼e(St,VSt)=xy(xy is cut by (St,VSt))=xy|ψ(x)2ψ(y)2|=xy|ψ(x)ψ(y)|(ψ(x)+ψ(y))xy(ψ(x)ψ(y))2xy(ψ(x)+ψ(y))2

Then

𝔼e(St,VSt)𝔼d|St|qL~G(ψ)xy(ψ(x)+ψ(y))2dxψ(x)22qL~G(ψ)

Now use the following fact to finish:

Fact: If X and Y are random variables with (Y>0)=1, then (XY𝔼X𝔼Y).

(Proof: let R=𝔼X𝔼Y. Then 𝔼(XRY)=0, so (XRY0))>0, hence (XYR)>0).

Example. CN. This has λ2(L~CN=𝜃(1N2).

For SCN with |1S|12|CN|, we have e(S,VS)2. So

Φ(S)=minSV0<|S|<|V|2e(S,VS)d|S|=min1sN222s2N.

Compare with Cheeger’s inequality:

1N2<1N1N2.

Example. G=Qn, N=2n. G=Cay((2)n,{e1,,en}). We index eigenfunctions by sets T[n]. χT(x)=(1)iTxi, λT=2|T|n.

λ2(L~Qn)=2n=2logN.

Φ(Qn)22n=1n. If SQn, |S|N2, then

e(S,VS)n|S|1ne(S,VS)|S|.

Harper gives a better bound:

e(S,VS)|S|log2(2n|S|).

By considering S being half of the cube, we get

Φ(Qn)=1n=λ2(K~Qn)2.

Fiedler’s algorithm: Let f=i=1nχ{i}, L~Qnf=2nf. f(x)=i=1n(1)xi=n2|x|.

Φk=nk(nk)nj=0knj.

k=n2,

nn2n2n2n1=nn22n1n.