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1 Introduction

The course is Probabilistic Combinatorics, being lectured by

Julian Sa︸︷︷︸ has︸︷︷︸ ra︸︷︷︸ bu︸︷︷︸ dhe︸︷︷︸
“day′′

We will be studying in particular the Ramsey numbers. Starting with the simplest to define:

R(k) = min{n : every red/blue colouring of E(Kn) contains a monochromatic Kn}.

Example. R(3) ≤ 6: pick a vertex. Without loss of generality say it has at least 3 red
neighbours. If any of these are connected by a red edge, then we get a red triangle by using
the original vertex. If none of them are connected by a red edge, then we get a blue triangle
between them.

R(3) > 5: by considering the following picture.

Thus R(3) = 6.

Main question: how fast does R(k) → ∞ as k → ∞?

We will also study:

R(l, k) = min{n : every red/blue colouring of E(Kn) contains either a blue Kl or a red Kk}.

For a fixed graph H, we define

R(H) = min{n : every red/blue colouring of E(Kn) contains a monochromatic H}.
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Example. R(k) = R(Kk).

For H a fixed graph, we define

ex(n,H) = max{e(G) : G is a graph on n vertices and G 6⊃ H}.

Example. Mantel’s Theorem says that

ex(n,K3) =

õ
n2

4

û
.

1.1 Binomial Random Graph

Definition 1.1 (Binomial random graph). Given n ∈ N, p ∈ (0, 1), the binomial random graph
G(n, p) is the probability space defined on all graphs on n vertices, where each edge is included
independently with probability p.

1.2 Topics in this course

• First examples: “first moment method”.

• R(3, k):

– deletion method
– Lovász local lemma
– Semi-random method
– Hard core model
– The triangle free process
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• Dependent random choice:

– Ramsey numbers R(H) with H sparse
– Sidorenko conjecture
– Extremal numbers of bipartite graphs

• Pseudo-randomness

– R(H) of bounded-degree graphs
– size-ramsey numbers
– R(3, 3, k)

• Szemeredi-Regularity lemma

– Roth’s Theorem on 3-term arithmetic progressions in dense sets
– Ramsey-Turán

• Method of graph containers:

– Counting graphs with no C4

– R(3, 3, k)

– R(4, k)

1.3 Brief introduction to R(k)

Theorem (Erdos-Szekeres, ’35). R(k) ≤ 4k.

Proof sketch. Let n ≥ 4k and let χ be a colouring of Kn. Pick a vertex v. It must have ≥ 1
2n neighbours

connected to it by the same colour.
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Now ignore everything that was connected using the other colour. Pick a new vertex from what
remains, and apply the process again:

We continue until either A or B gets to size k. We basically just want

n

Å
1

2

ãk Å1
2

ãk
≥ 1,

i.e. n ≥ 4k.

5



How about a lower bound?

Example.
This gives R(k) ≥ (k − 1)2 + 1. Quite a long way from 4k!

Theorem (Erdos, ’47). R(k) ≥ (1− o(1)) k√
2e
2k/2.

Notation. o(1) denotes a quantity that → 0 as k → ∞.

Proof. Let n = (1− o(1)) k√
2e
ek/2 we choose χ to be a random colouring of E(Kn) where the colour of

each edge is chosen red / blue uniformly and independently. We have

P(χ has a monochromatic Kk) = P

Ñ ⋃
K∈[n](k)

{K is a monochromatic clique}

é
≤ 2

Ç
n

k

å
2−

(k
2

)

≤ 2
(en
k

)k
2−

(k
2

)
=
(en
k
2
Ä
k−1
2

ä)
< 1

by the choice of n.

Big question: Is there an “explicit” construction that gives R(k) ≥ (1 + ε)k, for some fixed ε > 0?Lecture 2
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2 The Ramsey numbers R(3, k)

Theorem (Erdos-Szekeres, 1935). R(l, k) ≤
(
k+l−2
l−1

)
.

Proof. Induction. See e.g. GT.

Note. R(k) = R(k, k) ≤
(
2(k−1)
k−1

)
∼ c 4k√

k
.

Corollary. R(3, k) ≤ k2.

Idea 1: If randomly colour Kn, we have ∼ 1
8

(
n
3

)
triangles  :(

Idea 2: We want to bias our distribution in favour of Kk – colour “red”. Say G ∼ G(n, p). Sad news:
if p � 1

n then G contains a K3 with high probability.  :(

Theorem (Erdos, 1960s). R(3, k) ≥ c
Ä

k
log k

ä3/2
for some c > 0.

Proof sketch. Sample G ∼ G(n, p), then define G̃ = G − (a vertex from each triangle). For this to
work we need #vertices

2 > #triangles. So n
2 > p3

(
n
3

)
. So take p ∼ n−2/3.

Remark. This is called the “deletion method”.

Fact (Markov). Let X be a non-negative random variable. Let t > 0. Then

P(X ≥ t) ≤ EX
t

.

That is
P(X ≥ sEX) ≤ 1

s
,

for any s > 0.

Fact. For 1 ≤ k ≤ n we have Ç
n

k

å
≤
(en
k

)k
and Ç

n

k

å
≥
(n
k

)k
.
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Definition 2.1 (Independence number). Let G be a graph. Then I ⊂ V (G) is independent if
x 6∼ y in G for all x, y ∈ I.
We use α(G) = size of the largest independent set.

Note. We are trying to construct a triangle free graph on k3/2−o(1) vertices with α(G) < k.

Lemma 2.2. Assuming that:

• 1
n � p ≤ 1

2

• G ∼ G(n, p)

Then
α(G) ≤ (2 + o(1))

log np

p
,

with probability tending to 1 as n → ∞ (known as “with high probability (w.h.p.)”).

Remark. We actually have = in this lemma.

Proof. Let k = (2 + δ) lognp
p , for some δ > 0. Let X be the random variable that counts the number
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of independent k sets in G.

EX = E
∑

I∈[n](k)

1I is independent

=
∑

I∈[n](k)

P(I is independent)

=

Ç
n

k

å
(1− p)

(k
2

)

≤
(en
k

)k
e−p

(k
2

)

≤
(en
k

· e−
Ä
k−1
2

ä
p
)k

→ 0

by plugging in k. So by Markov
P(X ≥ 1) ≤ EX → 0.

We have a method for bounding the probability that X is large: Markov says that P(X > t) ≤ EX
t .

What about bounding the probability that it is small?

Fact: Let X be a random variable with EX, VarX finite. Then for all t > 0,

P(|X − EX| ≥ t) ≤ VarX

t2
.

Reminder:
VarX = EX2 − (EX)2 = E(X − EX)2.

Lemma 2.3. Assuming that:

• 1
n � p ≤ 1

• G ∼ G(n, p)

Then

#triangles in G = (1 + o(1))p3
Ç
n

3

å
with high probability.

Proof. Let X be the random variable counting the number of triangles in G. Note

X =
∑

T∈[n](3)

1T (2)⊂G.
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Mean is straightforward:

EX = p3
Ç
n

3

å
.

Variance is a little more tricky. First:

X2 =
∑

S,T∈[n](3)

1S(2),T (2)⊂G.

Lecture 3

We can write

EX2 =
∑

S,T∈[n](2)

P(T (2), S(2) ⊂ G)

(EX)2 =
∑

S,T∈[n](2)

P(T (2) ⊂ G)P(S(2) ⊂ G)

Since the pairs of events are independent whenever |S(2) ∩ T (2)| = 0, we have

VarX ≤
∑

S,T∈[n](2)

|S(2)∩T (2)|=1

≤ p5n4 + EX
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Now note

P(|X − EX| ≥ δEX) ≤ VarX

δ2(EX)2

≤ p5n4

δ2(EX)2
+

1

δ2EX

≤ C
p5n4

(n3p3)2
+

1

δ2EX

≤ C
1

n2p
+

1

δ2EX
→ 0

Recall that before we showed that for G ∼ G(n, p), 1
n � p ≤ 1

2 , we have

α(G) ≤ (2 + o(1))
log(np)

p

with high probability.

Proof of lower bound on R(3, k). Set n =
Ä

k
log k

ä3/2
, p = n−2/3. Let G ∼ G(n, p) and let G̃ with a

vertex deleted from each triangle. Then with high probability we have

α(G̃) ≤ α(G)

≤ (2 + o(1))
log np

p

≤
Å
2

3
+ o(1)

ã
n2/3 log n

≤
Å
2

3
+ o(1)

ã
k

log k
(log k3/2)

≤ (1 + o(1))k (∗)

We also have with high probability:

|V (G̃)| ≥ n− (#of triangles in G)

≥ n− (1 + o(1))
p3n3

6

= n− (1 + o(1))
n

6

≥ n

2
(∗∗)

So with high probability (∗) and (∗∗) hold. So there must exist a graph G̃ on n
2 = 1

2

Ä
k

log k

ä3/2
with

no triangles and independence number < k (actually not quite, but would have worked if we multiply
one of the parameters by a constant or something).
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Definition (Chromatic number). Let G be a graph. The chromatic number of G is the min-
imum k such that there exists χ : V (G) → [k]such that no edge has both ends in the same
colour.

χ(G) denotes the chromatic number.

Similar to the above lower bound on R(3, k), Erdős proved:

Theorem (Erdős). There exist graphs G with arbitrarily large chromatic number and arbi-
trarily large girth, i.e. for all g, k ∈ N there exists G with girth > g and χ(G) > k.

Idea: let’s delete an edge from each triangle, instead of a vertex (we have a lot more edges to spend
than we have vertices!).
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For this we need
p3n3 � pn2

so p = γ√
n

. For some small γ > 0.

Danger : when we delete an edge from each triangle, we need to ensure that we don’t hurt α(G).

Theorem 2.4 (Erdos, 1960s). R(3, k) ≥ c k2

(log k)2 for some c > 0.

To prove this, it is enough to prove for sufficiently large n that there exists a triangle free graph on n
vertices with

α(G) ≤ Cn
1
2 log n

for some C > 0.

This is because we can set k = C
√
n log n, and then get n = c k2

(log k)2 .

More sketching of the idea: we know α(G) ≤ 2 logn
p .

What if k > 2 lognp
p ? Then there must be an edge (because α(G) < k.

Not very impressive.

What if k > 100 lognp
p ? Then we actually get a lot of edges: expect pk2, and can guarantee pk2

16 .
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Lemma 2.5. Assuming that:

• 1
n � p ≤ 1

2

• G ∼ G(n, p)

• k > C logn
p

Then with high probability every set of size ≥ k in G induces pk2

16 edges.
Lecture 4

Proof. Fix t = pk2

16 and fix a set S with size |S| = k.

P(e(G[S]) < t) ≤
t∑

i=0

Ç(
k
2

)
i

å
pi(1− p)

(k
2

)
−i

≤ t

Ç(
k
2

)
t

å
pt(1− p)

(k
2

)
−t

≤ t

ñÅ
ek2

2t

ãt
pt
ô
e−p

î(k
2

)
−t
ó

≤ t(e8)
pk2

16 e−p
(k
2

)
/2

≤ k2
î
(e8)1e−4+o(1)

ó pk2

16

≤ e−αpk2

for some α > 0.

We now union bound on all S ∈ [n](k).

P(∃S ∈ [n](k) such that e([S]) < t) ≤
Ç
n

k

å
P(e(G[S]) < t)

≤
(en
k

)k
e−αk2p

=
(en
k

· e−αkp
)k

≤
Ç
enp

Å
1

pn

ãαCåk

(using kp ≥ C log n) which → 0 for C > 1
α .

Lemma 2.6. Assuming that:

• F = {Ai}i be a collection of events
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• Et, for t ∈ N, be the event that t independent events of F occur

Then

P(Et) ≤
1

t!

(∑
i

P(Ai)

)t

.

Remark. t! = tte−t
√
2πt(1 + o(1)).

We will use t! ≥ tte−t/2 for large t in the above lemma to get:

P(Et) ≤ 2

Å
eE(# of Ai that hold

t

ãt
.

Proof. Let I = {(Ai1 , . . . , Aik) : Ai1 , . . . , Aik are independent}.

1Et
≤ 1

t!

∑
(Ai1 ,...,Aik

∈I

1Ai1∩···∩Aik

P(Et) ≤
∑

(Ai1
,...,Aik

)∈I

P(Ai1 ∩ · · · ∩Aik)

≤ 1

t!

∑
i1,...,it

P(Ai1) · · ·P(Aik)

=
1

t!

(∑
i

P(Ai)

)t

Theorem. Assuming that:

• n ≥ 2
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Then there exists a triangle-free graph G on n vertices with

α(G) ≤ C
√
n log n.

Proof. Let n be large. Let p = γ√
n

for some γ > 0. Let G ∼ G(n, p), and let G̃ be G with a maximal
collection of edge disjoint triangles T removed, i.e. G̃ = G− T .

Clearly G̃ is triangle-free. We let Q be the event that every set of size k, where k = C
√
n log n contains

at least pk2

16 edges. We now consider

P(α(G̃) ≥ k) = P(α(G̃) ≥ k ∩Q) + P(α(G̃) ≥ k ∩Qc).

So
P(α(G̃) ≥ k) ≤ P(α(G̃) ≥ k ∩Q)︸ ︷︷ ︸

(∗)

+o(1).

We now union-bound

(∗) ≤
Ç
n

k

å
P(I independent in G̃ ∩Q)

=

Ç
n

k

å
P(T intersects I in ≥ pk2

16
edges)

Define {Ti} to be the collection of all triangles that meet I in at least one edge, and define the event
Ai = {Ti ⊂ G}.

Note that the event Et, where t = pk2

16 , from the lemma holds on the event that T meets I in pk2

16 edges.
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This is where we use the fact that we only choose edge-disjoint triangles! By Lemma 2.6, we have

P(Et) ≤ 2

Å
ek2np3

t

ãt
≤
Å
16ek2np3

pk2

ã pk2

16

= (16eγ2)
pk2

16

So
(∗) ≤ (16eγ2)

pk2

16

(en
k

)k
→ 0,

if γ is chosen to be small and C large.

Lecture 5

2.1 Lovasz-Erdős Local Lemma

Lemma 2.7 (Erdos-Lovasz, 70s). Assuming that:

• F = {Ai} is a family of events in a probability space

• G a dependency graph of F

• P(Ai) ≤ 1
e(∆+1) , where ∆ = ∆(G) is the max degree of G

Then

P

(⋂
i

Ac
i

)
> 0.

Definition 2.8 (Dependency graph). If F = {Ai} is a family of events, a dependency graph G
is a graph with vertex set F , with the property that: for all i, the event Ai is independent from
{Aj : Aj 6∼ Ai}.

Picture:
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Reminder: Ai is independent from {Aj : Aj 6∼ Ai} if E is formed by taking intersections of Aj , A
c
j 6∼ Ai,

we have
P(Ai ∩ E) = P(Ai)P(E).

Theorem (Spencer). R(k) ≥ (1 + o(1))
√
2k
e 2k/2.

Proof. Let δ > 0 and let n = (1 − δ)
√
2k
e 2k/2. Choose a colouring uniformly at random. For every

S ∈ [n](k), define the event
AS = “S(2) are monochromatic”.

We clearly have P(AS) = 2−
(k
2

)
+1.

Let G be the dependency graph on {AS}S where AS ∼ AT if S(2) ∩ T (2) 6= ∅.

∆ = ∆(G) ≤
Ç
k

2

å
·
Ç
n− 2

k − 2

å
≤ k4 ·

Å
1

n2

ãÇ
n

k

å
We now check:

∆ · 2−
(k
2

)
+1 ≤ 2k4

Å
1

n2

ã(en
k

)k
2−

(k
2

)
=

ï
(1 + o(1))

1

n2/k

Å
en

√
n

k
· 2−k/2

ãòk
.

This → 0. So the condition in Local Lemma holds for sufficiently large k.

Remark. This is the best known lower bound for diagonal Ramsey.

Definition 2.9 (k-uniform hypergraph). Say H is a k-uniform hypergraph on vertex set X if
H ⊂ X(k).
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Definition 2.10 (Colourable k-uniform hypergraph). Say a k-uniform hypergraph is 2-
colourable if there exists χ : X → {red,blue} such that there is no monochromatic e ∈ H.

Theorem 2.11. Assuming that:

• H a k-uniform hypergraph with maximum degree d

• d ≤ 2k−1

ek − 1

Then H is 2-colourable.

Proof. We choose our colouring of the ground set X uniformly at random. For each e ∈ H, define the
event

Ae = “e monochromatic”.

We have P(Ee) = 2−k+1. We want 2−k+1 ≤ 1
e(∆+1) . Note if we define our dependency graph G by

Ae ∼ Af if e ∩ f 6= ∅, then
∆(G) ≤ d · k.

Now just use the bound on d in the hypothesis.

Remark. Actually, our second application implies the first on R(k): just let H be the
(
k
2

)
-

uniform hypergraph on X = [n](2), defined by

H = {S(2) : S ∈ [n](k)}.

Theorem 2.12 (Lopsided Local Lemma). Assuming that:

• F = {Ai} a family of events

• G a dependency graph

19



• x1, . . . , xn ∈ (0, 1) be such that ∀i,

P(Ai) ≤ xi

∏
Ai∼Aj

(1− xj)

(where Ai ∼ Aj denotes adjacency in the dependency graph).

Then

P

(
n⋂

i=1

Ac
i

)
≥

n∏
i=1

(1− xi).

Proof. We use
P(A ∩B) = P(A | B)P(B).

Applying this many times, we have

P

(
n⋂

i=1

Ac
i

)
=

n∏
i=1

P(Ac
i | Ac

1 ∩ · · · ∩Ac
i−1)

=

n∏
i=1

(1− P(Ai | Ac
1 ∩ · · · ∩Ac

i−1)︸ ︷︷ ︸
≤xi?

)

We will prove that this term is ≤ xi by instead proving the more general statement:

(∗) = P

Ñ
Ai

∣∣∣∣∣∣ ⋂j∈S

Ac
j

é
≤ xi,

where S ⊂ [n] \ {j}. We prove by induction on |S|.

If S = ∅, then done by hypothesis.

If S 6= ∅, then define
D =

⋂
j∈S
j∼i

Ac
j , I =

⋂
j∈Sj 6∼i

Ac
j .

Note that

(∗) = P(Ai | D ∩ I)

=
P(Ai ∩D ∩ I)

P(D ∩ I)

≤ P(Ai ∩ I)

P(D ∩ I)

=
P(Ai)P(I)
P(D ∩ I)

=
P(Ai)

P(D | I)
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Lecture 6 Let {Ai1 , . . . , Ais} be the events in the intersection D. Then

P(D | I) =
s∏

j=1

P(Ac
ij | I ∩Ac

i1 ∩ · · · ∩Ac
ij−1

)

=

s∏
j=1

(1− P(Aij | I ∩Ac
i1 ∩ · · · ∩Ac

ij−1
))

If no events in the intersection, then we are already done. Otherwise, we may apply the induction
hypothesis to each term to get

P(Ai)

P(D | I)
≤

xi

∏
j∼i(1− xj)∏s

j=1(1− xij )
≤ xi.

Proof of Local Lemma. Apply Lopsided Local Lemma with weights xi =
1

∆+1 for all i. We just need
to check that the probability upper bounds in Lopsided Local Lemma hold.

By calculus, we have Å
∆

∆+ 1

ã∆
≥ 1

e
.

Hence

P(Ai) ≤
1

e(∆ + 1)

≤ 1

∆ + 1

Å
∆

∆+ 1

ã∆
=

1

∆+ 1

Å
1− 1

∆ + 1

ã∆
≤ 1

∆ + 1

∏
Ai∼Aj

Å
1− 1

∆ + 1

ã
Now we will see another proof of R(3, k) ≥ c k2

(log k)2 , in order to give some intuition as to what kind of
situations are good for Local Lemma.

Proof of R(3, k) ≥ c k2

(log k)2 using Local Lemma. Recall that it is enough to show that for sufficiently
large n, there exists a triangle -free graph on n vertices with α(G) ≤ C

√
n log n.

Set k = C
√
n log n, and sample G ∼ G(n, p) where p = γ√

n
, with γ > 0 is chosen later.

Define the events:

• For each T ∈ [n](3), define
AT = “T (2) ⊂ G”.
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• For each I ∈ [n](k), define
BI = “I(k) independent in G”.

Define the dependency graph G:

• AT ∼ AS for S, T ∈ [n](3) if S(2) ∩ T (2) 6= ∅.

• AT ∼ BI for T ∈ [n](3), I ∈ [n](k) if S(2) ∩ I(2) 6= ∅.

• BI ∼ BJ for I, J ∈ [n](k) if I(2) ∩ J (2) 6= ∅.

Now note:

• The event AT is ∼ to ≤ 3n AS , S ∈ [n](3).

• The event AT is ∼ to ≤ 3nk−2 BI , I ∈ [n](k).

• The event BI is ∼ to ≤ k2n AS , S ∈ [n](3).

• The event BI is ∼ to ≤ k2nk−2 BJ , J ∈ [n](k).

We choose xT = 2p3 for all T ∈ [n](3) (“we want to make it a bit bigger than the probability of it
occuring so that we can afford the product stuff”) and xI = n−10k for all I ∈ [n](k).

Then

xT

∏
S∈[n](3)

T∼S

(1− xS)
∏

I∈[n](k)

I∼T

(1− xI) ≥ 2p3(1− 2p3)3n(1− n−10k)3n
k−2

≥ 2p3 exp(−(1 + o(1))[2p3(3n) + 3n−10knk−2])

= 2p3(1 + o(1))

≥ p3
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for large enough n. We have P(BI) = (1− p)
(k
2

)
≤ e−p

(k
2

)
, so

xI(1− 2p3)k
2n(1− n−10k)k

2nk−2

≥ n−10k exp(−(1 + o(1))[2p3k2n+ n−10kk2nk−2])

= n−10k exp(−(1 + o(1))(2γ2)pk2)

Note
e−p

(k
2

)
= exp

Å
− γ√

n
kC

√
n(log n)

ã
= n−γCk.

First choose γ small so e−2γ2pk � e−p
(k
2

)
1
2 , and then choose C � 1

γ , then done.

2.2 Upper bounds on R(3, k)

Theorem 2.13 (Ajtai-Komlós-Szemerédi, 1980s + Shearer 80s). R(3, k) ≤ (1 + o(1)) k2

log k .

Theorem 2.14 (Shearer, 1980s). Assuming that:

• G a triangle-free graph on n vertices

• max degree d

Then
α(G) ≥ (1 + o(1))

n

d
(log d),

where o(1) → 0 as d → ∞.

Remark. If we take G ∼ G
(
n, d

n

)
and modify, for d �

√
n, one can show that there exist

graphs with no triangles and
α(G) ≤ (2 + o(1))

n

d
log d.
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