Probabilistic
Combinatorics

Lectured by Julian Sahasrabudhe

October 22, 2025

Contents

1 Introduction
1.1 Binomial Random Graph . . . . . . . . ... . L
1.2 Topics in this course . . . . . . . . . . . e e e

1.3 Brief introduction to R(k) . . . . . . . .

2 The Ramsey numbers R(3,k)
2.1 Lovasz-Erdds Local Lemma . . . . . . . . . . . ..

2.2 Upper bounds on R(3,k) . . . . . . . o o

Index
Lecture 1

17

23

24



1 Introduction

The course is Probabilistic Combinatorics, being lectured by

Julian Sa has ra bu dhe
\/\/\/\/Y
“ ay//

We will be studying in particular the Ramsey numbers. Starting with the simplest to define:

R(k) = min{n : every red/blue colouring of F(K,) contains a monochromatic K,}.

Example. R(3) < 6: pick a vertex. Without loss of generality say it has at least 3 red
neighbours. If any of these are connected by a red edge, then we get a red triangle by using
the original vertex. If none of them are connected by a red edge, then we get a blue triangle
between them.

R(3) > 5: by considering the following picture.
/ ? \
e % o
T — o /

Main question: how fast does R(k) — oo as k — oco?

Thus R(3) = 6.

We will also study:
R(l, k) = min{n : every red/blue colouring of E(K,) contains either a blue K; or a red K}}.
For a fixed graph H, we define

R(H) = min{n : every red/blue colouring of E(K,) contains a monochromatic H}.



Example. R(k) = R(K}).
For H a fixed graph, we define

ex(n, H) = max{e(G) : G is a graph on n vertices and G 7 H}.
Example. Mantel’s Theorem says that

ex(n, K3) = {%QJ )

Al
o=

1.1 Binomial Random Graph

Definition 1.1 (Binomial random graph). Given n € N, p € (0, 1), the binomial random graph
G(n,p) is the probability space defined on all graphs on n vertices, where each edge is included
independently with probability p.

1.2 Topics in this course

o First examples: “first moment method”.
e« R(3,k):

— deletion method

— Lovéasz local lemma
— Semi-random method
— Hard core model

— The triangle free process



e Dependent random choice:

— Ramsey numbers R(H) with H sparse
— Sidorenko conjecture

— Extremal numbers of bipartite graphs
¢ Pseudo-randomness

— R(H) of bounded-degree graphs
— size-ramsey numbers
— R(3,3,k)

o Szemeredi-Regularity lemma

— Roth’s Theorem on 3-term arithmetic progressions in dense sets

— Ramsey-Turan
e Method of graph containers:

— Counting graphs with no Cy
— R(3,3,k)
— R(4,k)

1.3 Brief introduction to R(k)

[ Theorem (Erdos-Szekeres, '35). R(k) < 4F. }

Proof sketch. Let n > 4% and let x be a colouring of K,,. Pick a vertex v. It must have > %n neighbours
connected to it by the same colour.



W/

Now ignore everything that was connected using the other colour. Pick a new vertex from what
remains, and apply the process again:

AD 7De

)]
Y/

We continue until either A or B gets to size k. We basically just want

TOROE

ie. n >4k, O



How about a lower bound?

D7D

L

% @7] e v
Example. @

This gives R(k) > (k — 1)? 4+ 1. Quite a long way from 4*!

[ Theorem (Erdos, '47). R(k) > (1 — 0(1))%2’“/2. }

‘ Notation. o(1) denotes a quantity that — 0 as k — oo. ‘

Proof. Let n = (1 —o0(1))—£-¢#/2 we choose x to be a random colouring of E(K,,) where the colour of

V2e©
each edge is chosen red / blue uniformly and independently. We have

P(x has a monochromatic Kj) =P U {K is a monochromatic clique}
Ke[n](k)

by the choice of n. O

Lecture 2 Big question: Is there an “explicit” construction that gives R(k) > (1 + ¢)*, for some fixed ¢ > 0?



2 The Ramsey numbers R(3, k)

[ Theorem (Erdos-Szekeres, 1935). R(l, k) < (k'l"_lIQ) }
Proof. Induction. See e.g. GT. O
{ Note. R(k) = R(k,k) < (7)) ~ e 2. }
{ Corollary. R(3,k) < k2. }

Idea 1: If randomly colour K,,, we have ~ %(g) triangles ~ :(

Idea 2: We want to bias our distribution in favour of Ky — colour “red”. Say G ~ G(n,p). Sad news:
if p> % then G contains a K3 with high probability. ~> :(

3/2
[ Theorem (Erdos, 1960s). R(3,k) > ¢ (&) / for some ¢ > 0. }

Proof sketch. Sample G ~ G(n,p), then define G = G — (a vertex from each triangle). For this to
work we need w > #triangles. So § > 3 (g) So take p ~ n=2/3, 0

[ Remark. This is called the “deletion method”. }

Fact (Markov). Let X be a non-negative random variable. Let ¢ > 0. Then
EX
P(X >t) < -

That is

for any s > 0.

Fact. For 1 < k <n we have

and


https://notes.ggim.me/GT

Definition 2.1 (Independence number). Let G be a graph. Then I C V(G) is independent if
xZyin G for all z,y € I.
We use a(G) = size of the largest independent set.

G
T
-

\
N0 -
s R
Note. We are trying to construct a triangle free graph on k3/2-°(1) vertices with a(G) < k.
. J
s B\

Lemma 2.2. Assuming that:
« 2<p<3
+ G~G(n,p)

Then

a(@) < (24 o(l))bi"p,

with probability tending to 1 as n — oo (known as “with high probability (w.h.p.)”).

Remark. We actually have = in this lemma.

Proof. Let k = (2 + 5)1%%, for some § > 0. Let X be the random variable that counts the number



of independent k sets in G.

EX =E Z ILI is independent
Ie[n]*)
= Z IP(I is independent)
Ie[n](k)

_ (Z) 1 p®

()
(5o
0

IN

IN

1

by plugging in k. So by Markov

P(X >1)<EX — 0. O
We have a method for bounding the probability that X is large: Markov says that P(X > t) < &X.
What about bounding the probability that it is small?
Fact: Let X be a random variable with EX, Var X finite. Then for all £ > 0,
X
P(X —EX| > t) < Y2X
12
Reminder:
Var X = EX? — (EX)? = E(X — EX)?.
e ™

Lemma 2.3. Assuming that:
e Lgp<l
. G~ Gln,p)
Then
#triangles in G = (1 + o(1))p® (;L)

with high probability.

Proof. Let X be the random variable counting the number of triangles in G. Note

X = Z ]].T(z) cG-
Te[n]®



Lecture 3

Mean is straightforward:

Variance is a little more tricky. First:

2
X = E ]]-S<2),T(2)CG'
S, Te[n]®)

We can write
EX?= Y PT®,5%cq)
S, T€[n](®

EX)?= Y PT®cEPE?caq)
S,T€[n](®

Since the pairs of events are independent whenever |S(?) N T()| = 0, we have

— AV s

VA
-

— | ]
fﬂAi(@ﬂAQﬂF( rol /PJ{WMJW

Var X < Z

S, T€n]®
\S(Q)OT(Q) |=1

<p’n*+EX

10



Now note

Var X
P(|X —EX| > 0EX) < 2 (EX)?
p°nt 1
< +
~ 02(EX)?  6’EX
5,4
p°n 1
<O 4+ __—
= C(n3p3)2 + 32EX
1 1
<O -
- Cn2p + 02EX
—0

Recall that before we showed that for G ~ G(n,p), % <p< %7 we have

log(np)
p

a(G) < (24 0(1))

with high probability.

3/2
Proof of lower bound on R(3,k). Set n = <1o§k) /

vertex deleted from each triangle. Then with high probability we have

a(GQ) < a(G)
log np
p

+ 0(1)) n?/3logn

IN

2+0(1))

IN

IN
T~

Wl Wl

k
+ 0(1)> @(log k3/2)

1+ o(1))k

IN

We also have with high probability:
[V(G)| > n — (#of triangles in G)

So with high probability () and (+*) hold. So there must exist a graph G on

one of the parameters by a constant or something).

11

n

2

1

— 2
no triangles and independence number < k (actually not quite, but would have worked if we multiply

(

_k_
log k

,p=n"23 Let G ~ G(n,p) and let G with a

()
3/2
) / with

O



Definition (Chromatic number). Let G be a graph. The chromatic number of G is the min-
imum k such that there exists x : V(G) — [k]such that no edge has both ends in the same
colour.

X(G) denotes the chromatic number.
\ J

Similar to the above lower bound on R(3, k), Erdds proved:

Theorem (Erdés). There exist graphs G with arbitrarily large chromatic number and arbi-
trarily large girth, i.e. for all g,k € N there exists G with girth > g and x(G) > k.

;Mmdc

Idea: let’s delete an edge from each triangle, instead of a vertex (we have a lot more edges to spend
than we have vertices!).

12



For this we need

p3n3 < pn2
sop= % For some small v > 0.

Danger: when we delete an edge from each triangle, we need to ensure that we don’t hurt a(G).

{ Theorem 2.4 (Erdos, 1960s). R(3,k) > C(lolg672k)2 for some ¢ > 0. }

To prove this, it is enough to prove for sufficiently large n that there exists a triangle free graph on n
vertices with

a(G) < Cn? logn
for some C' > 0.

This is because we can set k = C'y/nlogn, and then get n = cﬁ.

More sketching of the idea: we know a(G) < 210%.

What if k£ > 210’5%? Then there must be an edge (because a(G) < k.

\
\
b
G

Not very impressive.

What if & > IOOlog%? Then we actually get a lot of edges: expect pk?, and can guarantee %

13



Lemma 2.5. Assuming that:
© a<p<3
o G~ G(n,p)

logn
o k>C=+

Then with high probability every set of size > k in G induces % edges.

Lecture 4

Proof. Fixt = %62 and fix a set S with size |S| = k.

t sk
P(e(G[S)) < t) < Z ((j))pi(l _p)(’ﬁ)—i

< k2 [(68)1674+o(1)] %

< 670"”€2
for some o > 0.

We now union bound on all S € [n]*).

PGSeMw%mhmdeD<ﬂ§COPMGWD<O

()
- ()

(using kp > C'logn) which — 0 for C > 1.

Lemma 2.6. Assuming that:

o F ={A;}; be a collection of events

14



o &, for t € N, be the event that t independent events of F occur
Then

P(E) < 5 <§j IP(A») .

Remark. t! = tte™t/27t(1 + o(1)).
We will use t! > tfe~t/2 for large t in the above lemma to get:

eB(# of A; that hold)t

P(E;) < 2 < :

Proof. Let T ={(Ai,,...,Ai,): Ay, ..., A, are independent}.
1
Ig, < a Z La;nna,,
T (Aip e Agy €T
PE)< >, P(A,Nn-n4A)
(A7;17.-~,Aik)61

<o 30 PP

[

= % (Z P(Ai)>

Theorem. Assuming that:

e n>2

15



Then there exists a triangle-free graph G on n vertices with

a(G) < Cy/nlogn.

Proof. Let n be large. Let p = % for some v > 0. Let G ~ G(n,p), and let G be G with a maximal

collection of edge disjoint triangles T removed, i.e. G =G —T.

Clearly G is triangle-free. We let Q be the event that every set of size k, where k = C/nlogn contains
2
at least % edges. We now consider

P((G) > k) = P(a(G) > kN Q) + P(a(G) > kN Q).

So

P(a(G) > k) <P(a(G) > kN Q) +o(1).
(*)

‘We now union-bound

n

ORI

)]P’(I independent in G'N Q)

2

k
(n) P(T intersects I in > % edges)

o~

i

Pl

T

Define {T;} to be the collection of all triangles that meet I in at least one edge, and define the event
A; ={T; C G}.

2
Note that the event &, where t = %, from the lemma holds on the event that T meets I in % edges.

16



This is where we use the fact that we only choose edge-disjoint triangles! By Lemma 2.6, we have

2,3\t
2, 3\ He
< <166k np )
=\
p2
= (16ey?) %
So

P2 k
(x) < (166’72)% (%) — 0,

if v is chosen to be small and C' large.

Lecture 5

2.1 Lovasz-Erdds Local Lemma

Lemma 2.7 (Erdos-Lovasz, 70s). Assuming that:
o F ={A;} is a family of events in a probability space
e G a dependency graph of F
e P(4;) < m, where A = A(G) is the max degree of G

P (OA;) > 0.

Then

-
Definition 2.8 (Dependency graph). If 7 = {A4;} is a family of events, a dependency graph G
is a graph with vertex set F, with the property that: for all i, the event A; is independent from

N

Picture:

17
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Reminder: A; is independent from {A; : A; o A;} if E is formed by taking intersections of A;, A A Ay,
we have

P(A; N E) = P(A;)P(E).

[ Theorem (Spencer). R(k) > (1+ 0(1))@2’“/2. J

Proof. Let § > 0 and let n = (1 — 6)@2’“/ 2. Choose a colouring uniformly at random. For every
S € [n]®), define the event
Ag = “S® are monochromatic”.

We clearly have P(Ag) = 2-()+1,

Let G be the dependency graph on {Ag}s where Ag ~ Ap if S NT?) £ ¢,

A=AG) < (I;) : <Z:§> <kt (%) <Z>

‘We now check:

k
(%41 a1 en\k __m 1 (enyn __j/s
Aot (5) (F) 20 = o) g (27
This — 0. So the condition in Local Lemma holds for sufficiently large k. O
[ Remark. This is the best known lower bound for diagonal Ramsey. }

Definition 2.9 (k-uniform hypergraph). Say H is a k-uniform hypergraph on vertex set X if
HCX®.

18



Definition 2.10 (Colourable k-uniform hypergraph). Say a k-uniform hypergraph is 2-
colourable if there exists x : X — {red, blue} such that there is no monochromatic e € H.

>< i?@z :)Zc
d @

Theorem 2.11. Assuming that:

e H a k-uniform hypergraph with maximum degree d

2k—1

.dS ek

-1

Then H is 2-colourable.

Proof. We choose our colouring of the ground set X uniformly at random. For each e € H, define the
event
A, = “e monochromatic”.

We have P(E,) = 27%+1. We want 27%+! < L~ Note if we define our dependency graph G by

e(A+1)
A, ~Agifen f#0, then
AG) <d-k.
Now just use the bound on d in the hypothesis. O

Remark. Actually, our second application implies the first on R(k): just let H be the (’;)—
uniform hypergraph on X = [n](?), defined by

H={5S?:8en®}.

Theorem 2.12 (Lopsided Local Lemma). Assuming that:
o F={A;} a family of events

e G a dependency graph

19



e 1,...,2, € (0,1) be such that Vi,

P(Al) <z H (1 - J)j)

AiNAj
(where A; ~ A; denotes adjacency in the dependency graph).
Then

Proof. We use

Applying this many times, we have

()]

We will prove that this term is < x; by instead proving the more general statement:

ﬂA§ < @i,

jES

'.:M:h

(A | AN - AS )

(1 =P(A; | A7 N--- N A7)

<z;7?

=1

() =

where S C [n] \ {j}. We prove by induction on |S|.
If S =0, then done by hypothesis.

If S # 0, then define

D=4 I= () 45

jes JES]pi
i

Note that
(x) =P(4; | DNI)
P(A;NnDNI)
~ P(DNI)
P(A; N 1)
< - - 7
= P(DNI)
P(A;)P(1)
P(DNI)
P(A;)
~P(D[1)

20



Lecture 6 Let {A;,,...,A;,} be the events in the intersection D. Then

P(D 1) =[] P(AS [ TNAS N0 AS )

Tj—1
j=1
1j—1

=[O -PA;, [ TN A5 NN AL )
j=1

If no events in the intersection, then we are already done. Otherwise, we may apply the induction
hypothesis to each term to get

, T (1=
P(A; T H]NZ( xj) c o .

)
PN~ M(i—w,) =~

Proof of Local Lemma. Apply Lopsided Local Lemma with weights z; = ﬁ for all <. We just need

to check that the probability upper bounds in Lopsided Local Lemma hold.

By calculus, we have

Hence
P(4;) < L
YT e(A+1)
(ah)
< - (=
TA+1T\A+1
“x5i (- 551)
A+ A+1
SN 1 ( - A;) -
1L 1
Now we will see another proof of R(3,k) > cﬁ, in order to give some intuition as to what kind of

situations are good for Local Lemma.

Proof of R(3,k) > c(lok% using Local Lemma. Recall that it is enough to show that for sufficiently
g k)
large n, there exists a triangle -free graph on n vertices with a(G) < Cy/nlogn.

Set k = Cy/nlogn, and sample G ~ G(n,p) where p = %, with v > 0 is chosen later.

Define the events:

e For each T € [n]®] define
Ap =“T® c G”.

21



e For each I € [n]®), define
B = “I®) independent in G”.

Define the dependency graph G:

o Ap ~ Ag for S,T € [n]® if S@ NTA) £,
o Ap ~ By for T € [n]® T € [n]*) if S@ N 132 £,
e By~ ByforI,J¢c[n)®if I®nJR £,

Now note:

e The event Ar is ~ to < 3n Ag, S € [n]®).
o The event Ap is ~ to < 3n*"2 By, I € [n](k).

The event By is ~ to < k?n Ag, S € [n]®).

o The event By is ~ to < k*n*=2 By, J € [n]®).

A

We choose z7 = 2p® for all T € [n]®) (“we want to make it a bit bigger than the probability of it
occuring so that we can afford the product stuff”) and z; = n =% for all T € [n](*).

Then
vr [[ (—ws) [ Q—wn)>2p°(1—2p%)" (1 —n10k)3
S€[n)™ I1€[n]®
T~S I~T

> 2p% exp(—(1 + o(1))[2p*(3n) + 3n~1%%nk=2])
— 2(1+ o(1))
> p’

22



k
2

for large enough n. We have P(B;) = (1 —p)(2) < e=P(3), so

331(1 _ 2p3)k2n(1 _ n—lOk)kznk’Z > n—lOk exp(—(l 4 0(1))[2p3k2n 4 n—lOka,nk—Q])

=n""%exp(—(1 + o(1))(2y*)pk?)

Note

efp(lzc) = exp <—\’/yﬁkjc\/ﬁ(log 7’1,)) = n77ck.

First choose v small so e~ 2Pk s e*p(g)%, and then choose C' > %, then done.

2.2 Upper bounds on R(3, k)

p
Theorem 2.13 (Ajtai-Komlds-Szemerédi, 1980s + Shearer 80s). R(3,k) < (1 + o(l))lfgk.
N
Theorem 2.14 (Shearer, 1980s). Assuming that:
e ( a triangle-free graph on n vertices
e max degree d
Then n
a(G) 2 (1+ o(1)) 5 (logd),
where o(1) — 0 as d — co.
N
Remark. If we take G ~ G (n, %) and modify, for d < y/n, one can show that there exist
graphs with no triangles and
a(G) < (2+ 0(1))%10gd.
N

23
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