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Introduction

We will be analysing functions f: {0,1}"™ — {0,1}.
One reason to be interested in these is because of computers.

A more combinatorial reason is that a function f : {0,1}" — {0,1} can be viewed as a function
f:P([n]) = {0,1}, so can be viewed as a set system (a subset of P([n])). Set systems are very much
of interest in combinatorics (e.g. Sperner’s Lemma, Kruskal-Katona, etc).

Remarks on differences between this course and additive combinatorics

In additive combinatorics, it is common to study F4 in a way that is basis-independent. When studying
boolean functions, we won’t be working in a basis-independent way.

Slogan: if you have a basis that you care about, then perhaps you are working in the boolean functions
world, rather than the additive combinatorics world.



1 Discrete Fourier Analysis

Definition 1.1 (Character). Let G be a finite Abelian group. A character on G is a homo-
morphism x : G - T={z€C:|z| =1}.

Remark. This definition doesn’t change if T is replaced by (C \ {0}, x) (because any finite
subgroup of (C\ {0}, x) must be a subgroup of T).

Observe that if y; and x2 are characters, then so is x1x2, and also that if y is a character then so is
X =x"" Also, XX = X0, XoX = X-

Thus, the characters on G form an Abelian group, called the (Pontryagin) dual G of G.

Notation 1.2. Let f,g: G — C. We write

<.f7 g> = ]EzGGf(x)ma

where E,cc means \G|_1IZIGG. Then we also write || f|l2 = (f, f)2 = (Eq|f(2)|2)2. We also
define |[f[lp = (Ez[f(2)")7, 1 <p < oo and [|flec = maxy [f(z)].

Lemma 1.3 (Orthogonality of characters). The characters on G form an orthonormal set.

Proof. Let x1,x2 be characters and let x = x1x2. We need to prove that E,x(z) is 1 if x = xo and 0
otherwise. If y = xo, then the result is clear. Otherwise, pick u such that x(u) # 1. Then

Exx(z) = Exx(uz) = x(u)Ezx(2).

Since x(u) # 1, we get the result. O

This shows that |G| < |G|. To show the reverse inequality we appeal to the classification of finite
Abelian groups.

[ Theorem. Every finite Abelian group is a product of cyclic groups. J

[ Corollary 1.4. The characters on G form an orthonormal basis sof C©. J

Proof. Since they form an orthonormal set, it remains to show that they span. Let

G=Z/miZx - xXZ/miZ.



Given r,x € Z/myZ x - - X Z/mpZ (r = (r1,...,7%), £ = (21,...,2%)). Let

rje

k )
5 J
xr(@) =[]
j=1

It is easy to check that y, is a character, and that if r # s then y, # xs. O

Remark. This proof also demonstrates that G = G. But the isomorphism is ‘horrible’: it
doesn’t only depend on G, but also on the choice of m; and the homomorphism

GXZ/miZ X - X L/miZ.

A very useful convention is to use the uniform probability measure on G' and counting measure on G.
For example, if f,§: G — C, we define

(£,9)=>_F)900)

and

=

£, = (%:If@dl”)

Definition 1.5 (Fourier transform). Let f : G — C. The Fourier transform f of f is the
function from G to C defined by

FOO) = Exf(@)x(z) = (f,x)-

Lemma 1.6. The Fourier transofrm has the following properties:
(1) Plancherel / Parseval identity: (f,§) = (f,g).
(2) Convolution identity: Define f x g by

f*9(@) = Eugo—s f(u)g(v).

Then A R
T x90) f(x)a(x)-

(3) Inversion formula:

Proof.



(£,9)=>_f(x)a00)
= > (B f(@)X(2) By ()x(0)

= E.E, f(2)g(y) Y x(z"'y)

X

An examination of the proof of Corollary 1.4 shows straightforwardly that

|G| wu = identity
> x(u) = 0
X

otherwise

So >, x(z7ty) = A,y where

AQMJ{IGI =y
0 z#y

So we get

E.E, f(2)g(y) Y x(@™"y) = E.E, f(2)9(y) Auy = BB, f(2)g(z).

(2), (3) Next time.
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