
Analysis of Boolean
Functions
Lectured by Timothy Gowers

January 22, 2026

Contents

1 Discrete Fourier Analysis 3

Index 6
Lecture 1

1



Introduction

We will be analysing functions f : {0, 1}n → {0, 1}.

One reason to be interested in these is because of computers.

A more combinatorial reason is that a function f : {0, 1}n → {0, 1} can be viewed as a function
f : P([n]) → {0, 1}, so can be viewed as a set system (a subset of P([n])). Set systems are very much
of interest in combinatorics (e.g. Sperner’s Lemma, Kruskal-Katona, etc).

Remarks on differences between this course and additive combinatorics

In additive combinatorics, it is common to study Fn
2 in a way that is basis-independent. When studying

boolean functions, we won’t be working in a basis-independent way.

Slogan: if you have a basis that you care about, then perhaps you are working in the boolean functions
world, rather than the additive combinatorics world.
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1 Discrete Fourier Analysis

Definition 1.1 (Character). Let G be a finite Abelian group. A character on G is a homo-
morphism χ : G → T = {z ∈ C : |z| = 1}.

Remark. This definition doesn’t change if T is replaced by (C \ {0},×) (because any finite
subgroup of (C \ {0},×) must be a subgroup of T).

Observe that if χ1 and χ2 are characters, then so is χ1χ2, and also that if χ is a character then so is
χ = χ−1. Also, χχ = χ0, χ0χ = χ.

Thus, the characters on G form an Abelian group, called the (Pontryagin) dual Ĝ of G.

Notation 1.2. Let f, g : G → C. We write

〈f, g〉 = Ex∈Gf(x)g(x),

where Ex∈G means |G|−1
∑

x∈G. Then we also write ‖f‖2 = 〈f, f〉 1
2 = (Ex|f(x)|2)

1
2 . We also

define ‖f‖p = (Ex|f(x)p)
1
p , 1 ≤ p < ∞ and ‖f‖∞ = maxx |f(x)|.

Lemma 1.3 (Orthogonality of characters). The characters on G form an orthonormal set.

Proof. Let χ1, χ2 be characters and let χ = χ1χ2. We need to prove that Exχ(x) is 1 if χ = χ0 and 0
otherwise. If χ = χ0, then the result is clear. Otherwise, pick u such that χ(u) 6= 1. Then

Exχ(x) = Exχ(ux) = χ(u)Exχ(x).

Since χ(u) 6= 1, we get the result.

This shows that |Ĝ| ≤ |G|. To show the reverse inequality we appeal to the classification of finite
Abelian groups.

Theorem. Every finite Abelian group is a product of cyclic groups.

Corollary 1.4. The characters on G form an orthonormal basis sof CG.

Proof. Since they form an orthonormal set, it remains to show that they span. Let

G = Z/m1Z× · · · × Z/mkZ.
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Given r, x ∈ Z/m1Z× · · · × Z/mkZ (r = (r1, . . . , rk), x = (x1, . . . , xk)). Let

χr(x) =

k∏
j=1

e
2πi

rjxj
mj .

It is easy to check that χr is a character, and that if r 6= s then χr 6= χs.

Remark. This proof also demonstrates that G ∼= Ĝ. But the isomorphism is ‘horrible’: it
doesn’t only depend on G, but also on the choice of mi and the homomorphism

G ∼= Z/m1Z× · · · × Z/mkZ.

A very useful convention is to use the uniform probability measure on G and counting measure on Ĝ.
For example, if f̂ , ĝ : Ĝ → C, we define

〈f̂ , ĝ〉 =
∑
χ

f̂(χ)ĝ(χ)

and

‖f̂‖p =

(∑
χ

|f̂(χ)|p
) 1

p

.

Definition 1.5 (Fourier transform). Let f : G → C. The Fourier transform f̂ of f is the
function from Ĝ to C defined by

f̂(χ) = Eχf(x)χ(x) = 〈f, χ〉.

Lemma 1.6. The Fourier transofrm has the following properties:

(1) Plancherel / Parseval identity: 〈f̂ , ĝ〉 = 〈f, g〉.

(2) Convolution identity: Define f ∗ g by

f ∗ g(x) = Eu+v=xf(u)g(v).

Then
ˆf ∗ g(χ)f̂(χ)ĝ(χ).

(3) Inversion formula:
f(x) =

∑
χ

f̂(χ)χ(x).

Proof.
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(1)

〈f̂ , ĝ〉 =
∑
χ

f̂(χ)ĝ(χ)

=
∑
χ

(Exf(x)χ(x))(Eyg(y)χ(y))

= ExEyf(x)g(y)
∑
χ

χ(x−1y)

An examination of the proof of Corollary 1.4 shows straightforwardly that

∑
χ

χ(u) =

®
|G| u = identity
0 otherwise

So
∑

χ χ(x−1y) = ∆xy where

∆xy =

®
|G| x = y

0 x 6= y

So we get
ExEyf(x)g(y)

∑
χ

χ(x−1y) = ExEyf(x)g(y)∆xy = ExEyf(x)g(x).

(2), (3) Next time.
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