%! TEX root = Ramsey.tex % vim: tw=50 % 07/11/2024 11AM Then $\sum_{i \in B_k} p^t C_i + \sum_{i \in B_1, \ldots, B_{k' - 1}} x_i (d)^{-1} C_i \equiv 0 \pmod {p^{t + 1}}$ ($*$). \textbf{Claim:} $\sum_{i \in B_k} C_i \in \Span_{i \in B_1 \cup \cdots \cup B_{k - 1}} \langle C_i \rangle$. We will show that given $U$ such that $U \cdot C_i = 0$ got sll $i \in B_1, \ldots, B_{k - 1}$. Then \[ u \cdot \left( \sum_{i \in B_k} C_i \right) = 0 \] which finishes the proof as this implies $\sum_{i \in B_k} C_i \in \Span_{i \in B_1 \cup \cdots \cup B_{k - 1}} \langle C_i \rangle$. Take the inner product of ($*$) with $u$. Get \[ p^t \sum_{i \in B_k} u \cdot C_i \equiv 0 \pmod{p^{t + 1}} ,\] which is equivalent to $\sum_{i \in B_k} u \cdot C_i \equiv 0 \pmod p$. Since this happens for infinitely many $p$, we get $\sum_{i \in B_k} u \cdot C_i = 0$. \qedhere \end{itemize} \end{proof} A crucial notion that puts things into perspective is: \begin{definition*}[$(m, p, c)$-set] \glsnoundefn{mpcset}{$(m, p, c)$-set}{$(m, p, c)$-sets}% An $(m, p, c)$-set $S \subseteq \Nbb$ ($m$ the number of generators, $p$ the range of coefficients, $c$ the leading coefficient) with $x_1, x_2, \ldots, x_m$ is the set of the following form: \[ S = \left\{ \sum_{i = 1}^{m } \lambda_i x_i : \exists j, \lambda_j = c \text{ and } \forall i < j, \lambda_i = 0, \text{ and } \forall k > j, \lambda_k \in [-p, p] \right\} \] \begin{align*} c x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \cdots + \lambda_m x_m & \qquad \lambda_i \in [-p, p] \\ c x_2 + \lambda_3 x_3 + \cdots + \lambda_m x_m & \qquad \lambda_i \in [-p, p] \\ \vdots \qquad & \\ c_m x_m & \qquad \lambda_i \in [-p, p] \end{align*} We call these the \emph{rows} of the $(m, p, c)$-set. \end{definition*} \begin{remark*} An \gls{mpcset} is sort of a progression of progressions. \end{remark*} \begin{example*} \phantom{} \begin{enumerate} \item \mpc 2p1: generators $x_1, x_2$. Have $x_1 - p x_2, x_1 - (p - 1) x_2, \ldots, x_1 + p x_2$, then $x_2$. This is an \gls{ap} of length $2p + 1$ with its common difference. \item \mpc 2p3: $3 x_1 - p x_2, 3 x_1 - (p - 1) x_2, \ldots, 3x_1 + px_2$, then $3x_2$. This is an \gls{ap} of length $2p + 1$ with $3$ times its common difference, and its middle term is divisible by $3$. \end{enumerate} \end{example*} \begin{fcthm}[] \label{thm:2.6} % Theorem 2.6 Assuming: - $m, p, c$ in $\Nbb$ - a finite colouring of $\Nbb$ Then: there exists a monochromatic \gls{mpcset}. \end{fcthm} \begin{remark*} An \mpc Mpc with $M \ge m$ contains a \gls{mpcset}. \end{remark*} \begin{proof} By the above remark, it is enough to find a \mpc{k(m - 1) + 1}pc set such that each row is monochromatic. Let $n$ be large enough (enough in order to apply everything to follow). Let $A_1 = \{c, 2c, \ldots, c \left\lfloor \frac{n}{c} \right\rfloor\}$. By \nameref{VW}, there exists a monochromatic \gls{ap} of length $2n_1 + 1$, with $n_1$ is large enough. \[ R_1 = \{c x_1 - n_1 d_1, c x_1 - (n_1 - 1)d_1, \ldots, c x_1 n_1 d_1\} \] has colour $k_1$. Let $M = m(k - 1) + 1$. Now we restrict attention to \[ B_1 = \left\{d_1, 2 d_1, \ldots, \left\lfloor \frac{n}{(M - 1)p} \right\rfloor d_1\right\} .\] Observe that $cx_1 + \lambda_1 b_1 + \lambda_2 b_2 + \cdots + \lambda_{M - 1} b_{M - 1}$ where $b_i\in B_i$, $\lambda_i \in [-p, p]$ is in $R_1$ for any $\lambda_i \in [-p, p]$ and any $b_1, \ldots, b_{M - 1}$. Thus has colour $k_1$. Next: look inside $B_1$: \[ A_2 = \left\{ cd_1, 2cd_1, \ldots, \left\lfloor \frac{n_1}{(M - 1)pc} \right\rfloor cd_1 \right\} .\] Apply \nameref{VW} to find an \gls{ap} of length $2 n_2 + 1$, of colour $k_2$. Let \[ R_2 = \{cx_2 - n_2 d_2, cx_2 - (n_2 - 1) d_2, \ldots, c x_2 + n_2 d_2\} ,\] of colour $k_2$, and let \[ B_2 = \left\{ d_2, 2d_2, \ldots, \left\lfloor \frac{n_2}{(M - 2) p_2}\right\rfloor d_2 \right\} .\] Note that for any $b_1, \ldots, b_{M - 2}$ and $\lambda_1, \ldots, \lambda_{M - 2} \in [-p, p]$. Then \[ cx_2 + \lambda_1 b_1 + \cdots + \lambda_{M - 2} b_{M - 2} \] is in $R_2$, thus has colour $k_2$. Keep on doing this $M$ times. Restrict to $M$ generators (by setting some $\lambda$ to $0$). \end{proof} \begin{remark*} For the sake of exams (and also in general): Being ``super'' pedantic about $\left\lfloor \bullet \right\rfloor$ and bounds is not that important. The \emph{idea} is important. \end{remark*} \begin{theorem}[Finite Sums Theorem] \label{fst} % Theorem 2.7 Let $m$ be fixed. Then whenever we finitely colour $\Nbb$, there exist $\{x_1, \ldots, x_m\}$ such that \[ \left\{ \sum_{i \in X_i} : I \subset [m], I \neq \emptyset \right\} \] is monochromatic. \end{theorem} Also known as Folkman's Theorem \begin{proof} The previous theorem implies this: any \mpc m11 contains a set of the above desired form. \end{proof}