%! TEX root = Ramsey.tex % vim: tw=50 % 31/10/2024 11AM \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item You can prove Gallai with a standard focusing + product argument. \item \nameref{HJ} for \glsref[dpps]{$2$-point parameter set} on $X = \{1, 2\}$ gives a rectangle, while \nameref{gallai} can give a square. \end{enumerate} \end{remark*} \newpage \section{Partition Regular Equations} Schur's theorem: $x + y = z$ has monochromatic solutions (if $\Nbb$ is finitely coloured). Van der Waerden: $x_1, x_2, y_1, \ldots, y_m$ such that the system \begin{align*} y_1 &= x_1 + x_2 \\ y_2 &= x_1 + 2x_2 \\ &~\vdots \\ y_m &= x_1 + mx_2 \end{align*} has a monochromatic solution. \textbf{Main aim:} decide when a system of equations is `partition regular'. \begin{definition*}[Partition regular] \glsadjdefn{pr}{partition regular}{matrix}% Let $A \neq 0$ be a $m \times n$ matrix over $\Qbb$ and we say that $A$ is \emph{partition regular} (PR) if whenever $\Nbb$ is finitely coloured, there exists a monochromatic $\mathbf{x} \neq 0$ such that $A \mathbf{x} = 0$. \end{definition*} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item Schur: says $(1, 1, -1)$ is \gls{pr}. \item Van der Waerden: says \[ \begin{pmatrix} 1 & 1 & -1 & 0 & \cdots & 0 \\ 1 & 2 & 0 & -1 & \cdots & 0 \\ 1 & 3 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & m & 0 & 0 & \cdots & -1 \end{pmatrix} \] is \gls{pr}. \item $(1, -1)$ is \gls{pr}. \item $(3, 4, -7)$ is \gls{pr} (just take all to be equal). \item $(3, 4, -6)$? Don't know yet. \item Non-example: $(2, -1)$. Need $2x = y$. Colour $\Nbb$ by setting $n$ to be red if the biggest power of $2$ dividing it is even, and blue otherwise. \end{enumerate} \end{example*} \begin{definition*}[Column property] \glsadjdefn{cp}{column property}{matrix}% We say that a rational matrix \[ A = \begin{pmatrix} \uparrow & \uparrow & \cdots & \uparrow \\ c_1 & c_2 & \cdots & c_n \\ \downarrow & \downarrow & \cdots & \downarrow \end{pmatrix} \] has the column property (CP) if there exists a partition of $[n] = B_1 \sqcup B_2 \cdots \sqcup B_r$ such that: \begin{enumerate}[(1)] \item $\sum_{i \in B_1} c_i = 0$ \item $\sum_{i \in B_t} c_i \in \Span \langle c_j : j \in B_1 \cup B_2 \cup \cdots B_{t - 1} \rangle$ (note that it doesn't make a difference whether the span is the $\Rbb$-linear or $\Qbb$-linear span) \end{enumerate} \end{definition*} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $(1, 1, -1)$ can take $B_1 = \{1, 3\}$, $B_2 = \{2\}$, hence it does have the \gls{cp}. \item Van der Waerden matrix from (2) in the previous example: take $B_1 = \{1, 3, 4, \ldots, n\}$ and $B_2 = \{2\}$, which shows that it has the \gls{cp}. \item $(3, 4, -7)$, take $B_1 = \{1, 2, 3\}$ so it has \gls{cp}. \item $(2, -1)$ does not have \gls{cp}. \item $(\lambda, -1)$ has \gls{cp} if and only if $\lambda = 1$. \item $(3, 4, -6$ doesn't have the \gls{cp}. \end{enumerate} \end{example*} \textbf{Aim:} \begin{theorem}[Rado's Theorem] \label{rado} % Theorem 2.1 A matrix over $\Qbb$ is \gls{pr} if and only if it has the \gls{cp}. \end{theorem} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item \gls{pr} is checkable in finite time. \item Find $a, b \in \Nbb$ such that \[ \begin{pmatrix} 1 & -1 & 3 \\ 2 & -2 & a \\ 4 & -4 & b \end{pmatrix} \] is \gls{pr}. Take $(a, b) = (6, 12)$. \item Neither direction of \nameref{rado} is easy (or obvious)! \end{enumerate} \end{remark*} Today we will look at a single equation, i.e. a single row matrix. If we have $\mathbf{x} = (a_1, \ldots, a_n)$ a $1 \times n$ matrix, then $\mathbf{x}$ is \gls{pr} if and only if $\lambda \mathbf{x}$ is also \gls{pr}. So we may assume that $a_i \in \Zbb$. \textbf{Observation:} $(a_1, \ldots, a_n)$ has the \gls{cp} if and only if there exists a set $\{a_{i_1}, \ldots, a_{i_k}\}$ of non-zero elements such that $\sum_{k = 1}^{n} a_{i_k} = 0$ ($*$). Also note that we may assume that $a_i \neq 0$. We are going to show that if $\mathbf{x}$ \gls{pr} then it has the \gls{cp}, which is equivalent to ($*$) in this case. \begin{remark*} Even in this case, neither direction of \nameref{rado} is easy. \end{remark*} \begin{definition*} \glssymboldefn{e}% Let $x \in \Nbb$ and $p$ a prime. Then we can write \[ x = a_k p^k + \cdots + a_1 p + a_0 ,\] with $0 \le a_i < p$. Denote by $e(x) = \{a_t : t = \min,cbi : a_i \neq 0\}$. \end{definition*} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/25a545a4f604456e.png} \end{center} \end{example*} \begin{proposition} \label{prop:2.1} % Propositon 2.1 % Propositon 2.2 If $A = (a_1, \ldots, a_n)$, $a_i \neq 0$ is \gls{pr} then it has the \gls{cp}. \end{proposition} \begin{proof} Let $p$ be a huge prime, $p > \sum |a_i|$. I give to the number $x$ the colour $\e(x) \in \{0, \ldots, p - 1\}$. Then by assumption, there exists $x_1, \ldots, x_n$ of the same colour such that $\sum a_i x_i = 0$. \begin{center} \includegraphics[width=0.6\linewidth]{images/b6e1574502ca4b0c.png} \end{center} In symbols, let $t = \min \{t(x_1), \ldots, t(x_n)\}$, $I = \{i : t(x_i) = t\}$. When we sum $\sum_{i \in [n]} a_i x_i = 0$ and we look at the last digit $\bmod p$, we get $\sum_{i \in I} a_i d = 0$, where $d$is the colour of our $x_i$s. Then $d \left( \sum_{i \in I} a_i \right) \equiv 0 \pmod p$. Then $\sum_{i \in I} a_i = 0$ (and note $I$ is non-empty). \end{proof} \begin{remark*} To this day, there are no other known proofs of this proposition. \end{remark*}