%! TEX root = Ramsey.tex % vim: tw=50 % 29/10/2024 11AM \begin{fcdefn}[] If I have a \gls{cl} $L$ in $[m]^n$, then I can order $x \le y$ if and only if $x_i \le y_i$ for all $i$. Let $L^-$ denote the first point in this ordering, and let $L^+$ denote the last point in this ordering. \end{fcdefn} \begin{fcdefn}[] Let $L_1, \ldots, L_k$ be \glspl{cl}. We call them focussed if $L_i^+ = f$ for all $i \in [k]$. For a fixed colouring, they are colour focused if they are focused and $L_i \setminus \{L_i^+\}$ monochromatic for each $i$, and they have different colours. \end{fcdefn} \begin{example*} $[4]^2$ \begin{center} \includegraphics[width=0.3\linewidth]{images/87f85e6e054b4463.png} \end{center} are $3$ colour-focused \glspl{cl} $[4]^2$. \end{example*} \begin{proof}[Proof of \nameref{HJ}] The proof is by induction on the size of the alphabet, i.e. $m$. $m = 1$ is trivially true. Assume $m \ge 1$ and assume $\hj(m - 1, k)$ exists for all $k$. \textbf{Claim:} for every $1 \le r \le k$ there exists $n$such that in $[m]^n$ \begin{enumerate}[(1)] \item either there exists monochromatic \glspl{cl} \item there exists $r$ colour-focused \glspl{cl} \end{enumerate} Then we are done by $r = k$ and looking at the focus. Now we prove the claim: $r = 1$: look in $[m - 1]^{n'} \subset [m]^n$ We can take $\hj(m - 1, k)$. Now assume $r > 1$ and that $n$ is suitable for $r - 1$. We will show that $n + \hj(m - 1, k^{m^n})$ is suitable for $r$. Let $N = \hj(m - 1, k^{m^n})$ for convenience. Need: given $c$ a $k$-colouring of $[m]^{n + N}$ with no monochromatic \glspl{cl}, we can find $r$ colour-focused \glspl{cl}. Look at $[m]^{n + N}$ as $[m]^n \times [m]^N$, with $[m]^n = \{a_1, \ldots, a_{m^n}\}$. Let us colour $[m]^N$ as follows: \[ c' : [m]^N \to k^{m^n} \qquad c'(b) = (c(a_1, b), c(a_2, b), \ldots, c(a_{m^n}, b)) .\] By \nameref{HJ} there exists a \glspl{cl} $L$ with active coordinates $I$ such that \[ c(a, b) = c(a, b') \qquad \forall a \in [m]^n, \forall b, b' \in L \setminus \{L^+\} .\] But now this induces $c'' : [m]^n \to k$ where $c''(a) = c(a, b)$ for any $b \in L \setminus \{L^+\}$. By the definition of $n$, there exist $r - 1$ colour-focused \glspl{cl} (for $c''$) $L_1, L_2, \ldots, L_{r - 1}$, focused at $f$, and with active coordinates $I_1, I_2, \ldots, I_{r -1}$. Finally: look at the \glspl{cl} that start at $L_i^- \times L^-$ and active coordinates $I_i \cup I$. These give $r - 1$ \glspl{cl}, and the \glspl{cl} that starts at $f \times L^-$ with active coordinates $I$. All focused at $f \times L^+$. Then done. \end{proof} \begin{fcdefn}[$d$-dimensional space] \glsnoundefn{dpps}{$d$-point parameter set}{$d$-point parameter sets}% A \emph{$d$-dimensional space} $S \subseteq X^n$ or a \emph{$d$-point parameter set} is a set such that there exists $I_1, I_2, \ldots, I_d \subseteq [n]$ disjoint and $a_i \in X ~\forall i \in [n] \setminus (I_1 \cup \cdots \cup I_d)$, and $x \in S$ if and only if: \begin{itemize} \item $x_i = a_i$ for all $i \in [n] \setminus (I_1 \cup \cdots \cup I_d)$ \item $x_i = x_i$ if $i, j \in I_d$ for some $l \in [d]$ \end{itemize} \end{fcdefn} \begin{fcthm}[The Extended Hales-Jewett Theorem] % Theorem 1.10 Assuming: - $m, k, d$ positive integers Then: there exists $n$ such that whenever $[m]^n$ is $k$-coloured, there exists a \gls{dpps} monochromatic. \end{fcthm} \begin{proof} In $X^{n'd} = (X^d)^{n'} = Y^{n'}$ what does a \gls{cl} in $Y^{n'}$ look like? \begin{center} \includegraphics[width=0.6\linewidth]{images/6c1bfb2518d94972.png} \end{center} So a monochromatic line in $Y^{n'}$ is a monochromatic \gls{dpps} in $X^{n'd}$. Letting $n = d\hj(m^d, d)$ works. \end{proof} \begin{fcdefn}[Homothetic copy] \glsnoundefn{hc}{homothetic copy}{homothetic copies}% Let $S$ be a finite set of points in $X^n$. A homothetic copy of $S$ is a set of the form $x + \lambda S$. \end{fcdefn} \begin{fcthm}[Gallai's Theorem] \label{gallai} % Theorem 1.11 Assuming: - finite $S \subset \Nbb^d$ - $k$-colouring of $\Nbb^d$ Then: there exists a monochromatic \gls{hc} of $S$. \end{fcthm} \begin{proof} $S = \{S_1, \ldots, S_m\}$. Let $c : \Nbb^d \to k$ be a colouring. We colour $[m]^n$ (for $n$ large enough) as follows: \[ c'((x_1, \ldots, x_n)) = c(S_{x_1} + S_{x_2} + \cdots + S_{x_m}) .\] By \nameref{HJ}, there exists a monochromatic \gls{cl} in $[m]^n$ with active coordinates $I$. Then \[ c \left( \sum_{\text{inactive}} S_i + |I|S_j \right) \] has the same colour for all $j \in [m]$. Done as this is a copy of $S$ translate by $\sum_{\text{inactive}} S_i$, and dilation factor $|I|$. \end{proof}