%! TEX root = Ramsey.tex % vim: tw=50 % 24/10/2024 11AM \begin{corollary*} Whenever $\Nbb$ is finitely coloured, there exists a colour class that contains arbitrarily long \glspl{ap}. \end{corollary*} What about infinite monochromatic \glspl{ap} No, for example: \begin{enumerate}[(1)] \item colour $\{1, 2\}$ red, $\{3,4,5\}$ blue, $\{6, 7, 8, 9\}$ red, etc \item Or ``just do it'': the set of \glspl{ap} in $\Nbb$ is countable. So let them be $A_1, A_2, \ldots, A_k, \ldots$. Pick $x_1 < y_1$ in $A_1$, and colour $x_1$ red, $y_1$ blue. Next go to $A_2$ and select $x_1 < y_1 < x_2 < y_2$ in $A_2$. Colour $x_2$ red, $y_2$ blue. Keep going... \end{enumerate} \begin{fcthm}[Strengthened Van Waerden] \label{svw} % Theorem 1.8 Assuming: - $m, k \in \Nbb$ Then: there exists $n$ such that whenever $[n]$ is $k$-coloured, there exists a monochromatic \gls{ap} of length $m$ together with their common differences, i.e. the set $\{d, a, a + d, \ldots, a + (m - 1) d\}$ is monochromatic. \end{fcthm} \begin{proof} By induction on the number of colours. $k = 1$ is trivial. Assume that the case for $k - 1$ colours is true. So there exists $n$ that works for $m$ and $k - 1$. We will show that $\W(k, n(m - 1)+1)$ works for $m$ and $k$. If $[\W(k, n(m - 1)+1)$ are $k$-coloured, then there exists a monochromatic \gls{ap} (say red) of length $n(m - 1)+1$, say $a, a + d, \ldots, a + dn(m - 1)$. If any of $d, 2d, \ldots, nd$ is red, then we are done: e.g. $a, a + rd, \ldots, a + r(m - 1)d$ for some $r \in [n]$. If not, the set $\{d, 2d, \ldots, nd\}$ is $k - 1$-coloured.. This involves a $(k - 1)$ colouring on $[n]$, therefore there exist $b, b + r, \ldots, b + (m - 1)r$ and $r$ the same colour. This translates to $db, db + r, \ldots, db + d(m - 1)r, dr$ monochromatic. \end{proof} \begin{remark*} $m = 2$ is known as Schur's Theorem: we can always find $a, a + d, d$ monochromatic (for finite colouring of $\Nbb$). In other words, there exists a monochromatic solution to $x + y = z$. Can deduce Schur from Ramsey for pairs: $c : \Nbb \to [k]$ then we induce $c' : \Nbb^{(2)} \to [k]$ as follows: $c'(ij) = c(j - i)$. By \nameref{ramsey_rsets}, there exists $i < j < k$ such that $c'(ij) = c'(ik) = c'(jk)$. Then \[ c(\ub{j - i}_{x}) = c(\ub{k - i}_{z}) = c(\ub{k - j}_{y}) .\] Get $x + y = z$ and $x, y, z$ monochromatic. \end{remark*} \subsection{The Hales-Jewett Theorem} \glssymboldefn{pn}% Let $X$ be a finite set and $X^n$ is words of length $n$ on the alphabet $X$. \begin{fcdefn}[Combinatorial line] \glsnoundefn{cl}{combinatorial line}{combinatorial lines}% A \emph{combinatorial line} in $X\pn$ is a set of the following form: \[ \{(x_1, \ldots, x_n) \in X\pn : \exists I \subseteq [n], a_i \in X, I \neq \emptyset, x_i = a_i ~\forall i \notin I, x_i = x_j ~\forall i, j \in I\} .\] \end{fcdefn} \begin{example*} $X = [3]$ and we want combinatorial lines in $[3]^2$. If $I = \{1\}$, we get: \begin{align*} L_1 &= \{(1, 1), (2, 1), (3, 1)\} \\ L_2 &= \{(1, 2), (2, 2), (3, 2)\} \\ L_2 &= \{(1, 3), (2, 3), (3, 3)\} \end{align*} If $I = \{2\}$ we get: \begin{align*} L_4 &= \{(1, 1), (1, 2), (1, 3)\} \\ L_5 &= \{(2, 1), (2, 2), (2, 3)\} \\ L_6 &= \{(3, 1), (3, 2), (3, 3)\} \end{align*} $I = \{1, 2\}$, then \[ L_7 = \{(1, 1), (2, 2), (3, 3)\} .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/74553bee50a3488a.png} \end{center} \end{example*} \begin{example*} $[3]^3$, $I = \{1\}$ $(1, 2, 3), (2, 2, 3), (3, 2, 3)$, or if $I = \{1, 3\}$ $(1, 3, 1), (2, 3, 2), (3, 3, 3)$. \end{example*} \begin{note*} The definition of a \gls{cl} is invariant under permutations of $X$. \end{note*} \begin{fcthm}[The Hales-Jewett Theorem] \label{HJ} Assuming: - $m, k \in \Nbb$ Then: there exists $n$ such that whenever we $k$-colour $[m]\pn$ there exists a monochromatic \gls{cl}. \end{fcthm} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item \glssymboldefn{HJ}% The smallest such $n$ is call $HJ(m, k)$. \item \nameref{HJ} implies \nameref{VW}: \begin{proof} Let $c$ be a finite colouring of $\Nbb$. Let $n$ be large enough ($=\hj(m, k)$)and now colour $[m]\pn$. $m$ is the length of desired \gls{ap}. Define \[ c'((x_1, x_j, \ldots, x_n)) = c(x_1 + x_2 + \cdots x_n) .\] By \nameref{HJ}, there exists a monochromatic line \begin{center} \includegraphics[width=0.6\linewidth]{images/62acdb07271047e5.png} \end{center} \end{proof} \end{enumerate} \end{remark*} \textbf{Exercise:} Suppose you play Naughts and Crosses with $m$ in a line and you play it in high enough dimensions. Show it cannot be a draw (assuming optimal play). Moreover, it is a first player win. \textit{Hint: Strategy stealing.}