%! TEX root = Ramsey.tex % vim: tw=50 % 28/11/2024 11AM \begin{proposition} \label{prop:3.3} % Proposition 3.3 $X = \{0, 1, 2\}$ is not \gls{eram}. \end{proposition} \begin{proof} Recall in $\Rbb^n$ we have \[ \|x + y\|_2^2 + \|x - y\|_2^2 = 2(\|x\|_2^2 + \|y\|_2^2) .\] Every copy of $\{0, 1, 2\}$ is $\{x - y, x, x + y\}$ with $\|y\|_2 = 1$ (in any $\Rbb^n$). We have \[ \|x + y\|_2^2 + \|x - y\|_2^2 = 2 \|x\|_2^2 + 2 .\] If we can find a colouring of $\Rbb_{\ge 0}$ such that there does not exist a monochromatic solution to $a + b = 2c + 2$. Then use $c(x) \to \phi(\|x\|_2^2)$. We $4$-colour $\Rbb_{\ge 0}$ by $\phi(x) = \lfloor x \rfloor \pmod{4}$. Suppose $a, b, c$ all have colour $n \in \{0, 1, 2, 3\}$. Then $a + b = c + 2$ implies \[ a + b - 2c = M_4 + \{a\} + \{b\} - 2 \{c\} = 2 \] where $M_4$ is a multiple of $4$. This is impossible as $-2 < \{a\} + \{b\} - 2 \{c\} < 2$. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item For all $n$, there is a $4$-colouring of $\Rbb^n$ that stops every copy of $X = \{0, 1, 2\}$ from being monochromatic. \item Very important in $a + b = 2c + 2$, we got this $2$ to not be $0$. \item It will turn out that the property that made $\{0, 1, 2\}$ not \gls{eram} is ``it does not lie on a sphere''. \end{enumerate} \end{remark*} \begin{definition*}[Spherical] \glsadjdefn{spher}{spherical}{set} A set $X \subseteq \Rbb^n$ is called \emph{spherical} if it lies on the surfcace of a sphere. \end{definition*} For example, a triangle, a rectangle, any simplex (non-degenerate). \begin{definition*}[Simplex] \glsnoundefn{simp}{simplex}{simplexes}% Let $x_1, \ldots, x_d$ be some points. They form a \emph{simplex} if $x_1 - x_d, x_2 - x_d, \ldots, x_{d - 1} - x_d$ are linearly independent. In other words, they do not lie in a $(d - 2)$-dimensional affine space. \end{definition*} \textbf{Aim:} If $X$ is \gls{eram}, then $X$ is spherical. To do so, we will use a ``generalised parallelogram law''. \begin{lemma} \label{lemma:3.4} % Lemma 3.4 \begin{iffc} \lhs $x_1, \ldots, x_d$ in $\Rbb^n$ are not \gls{spher} \rhs there exists $c_i \in \Rbb$, not all $0$, such that: \begin{enumerate}[(1)] \item $\sum_i c_i = 0$ \item $\sum_i c_i x_i = 0$ \item $\sum_i c_i \|x_i\|_2^2 \neq 0$ \end{enumerate} \end{iffc} \end{lemma} In the previous proof, we took $(1, 1, -2)$ and $2$ being the value in (3). \begin{iffproof} \rightimpl $x_1, \ldots, x_d$ are not \gls{spher}. The first two conditions say that $x_1, \ldots, x_d$ is not a \gls{simp}: so there exists $c_1, \ldots, c_{d - 1}$ (not all $0$) such that $\sum_i c_i(x_i - x_d) = 0$ or $\sum_{i = 1}^{N - 1} c_i x_i + (-c_1 - c_2 - \cdots - c_{d - 1})x_d = 0$. First we note that (1)--(3) are invariant under translation by $v \in \Rbb^n$: \begin{itemize} \item $\sum_i c_i(x_i + v) = 0$ since $\sum_i c_i = 0$ \item $\sum_i c_i \|x_i + v\|_2^2 = \sum_i c_i \|x_i\|_2^2 + 2c_i (x_i, v) + c_i \|v\|_2^2 = \sum_i c_i \|x_i\|_2^2 + 2 \left( \sum_i c_i x_i, v \right) + \|v\|_2^2 \sum_i c_i = \sum_i c_i \|x_i\|_2^2$ \end{itemize} Let us look at a minimal subset of $x_1, \ldots, x_d$ that is not \gls{spher}. If we can show this for without loss of generality $x_1, \ldots, x_k$ ($k \le d$) then take $c_i = 0$ for all $i \in [k + 1, d]$. Let $\{x_2, \ldots, x_k\}$. This is \gls{spher} by minimality. Suppose the sphere radius is $r$, and centred at $y$. By the above, translate the set such that $\{x_2, \ldots, x_k\}$ is centred at $0$. Since $\{x_1, \ldots, x_k\}$ are not \gls{spher}, it is not a \gls{simp}. Hence there exists $c_i$ such that $\sum_i c_i(x_i - x_k) = 0$. Then \[ c_1 x_1 + c_2 x_2 + \cdots + c_{k - 1} x_{k -1 } + (-c_1 - c_2 - \cdots - c_{k - 1}) x_k = 0 .\] Without loss of generality $c_i \neq 0$. This is fine because the same $c_i$'s work after translations ((1)--(3) is totally invariant under translations). Then \[ \sum_{i = 1}^k c_i \|x_i\|_2^2 = c_1 \|x_1\|_2^2 + r^2 \left( \sum_{i = 2}^{k} c_i \right) \neq 0 \] as $\|x_i\| \neq r$. \leftimpl Suppose there exists $c_i$ as in the statement, and assume $(x_1, \ldots, x_d)$ are \gls{spher}, centred at $r$, radius $r$. Translate the set so that they are centred at the origin (this preserves all conditions and does not vhange the value of $\sum_I c_i \|x_i\|^2 \neq 0$). Let $\|x_i\|^2 = r^2$. Then \[ \sum_i c_i \|x_i\|^2 = r^2 \sum_i c_i = 0 \] so $(x_1, \ldots, x_d)$ are not \gls{spher}. \end{iffproof} \begin{corollary}[Generalised parallelogram law] \label{coro:3.5} % Corollary 3.5 Let $X = \{x_1, \ldots, x_n\}$ be non-spherical. Then there exists $c_1, \ldots, c_n$ not all $0$ with $\sum c_i = 0$ and there exists $b \neq 0$ such that $\sum_i c_i \|x_i\|^2 = b$. \end{corollary} \textbf{Very important:} This is tru for \emph{every} copy $X'$ of $X$ (with the same $c_i$ and $b$!). Choosing the $c_i$ as in \cref{lemma:3.4}. If $\phi(X)$ is a copy of $X$ \begin{center} \includegraphics[width=0.6\linewidth]{images/5ad066944ee343dd.png} \end{center} then as we have seen we can translate and the $c_i$ and $b$ are unaffected, and $\phi(0) = 0$. After that apply $A$ that corresponds to rotation / reflection, and $\|Ax\|_2 = \|x\|_2$, so (3) holds. \begin{fcthm}[] \label{thm:3.6} % Theorem 3.6 Assuming: - $X$ is \gls{eram} Then: $X$ is \gls{spher}. \end{fcthm} \begin{proof} Suppose $X$ is not \gls{spher}. Then there exists $c_i$ (not all $0$) such that $\sum_i \|x_i\|^2 = b$ and $\sum_i c_i = 0$. Also true for any copy of $X'$. Going to split $[0, 1)$ into $[0, \delta), [\delta, 2\delta), \ldots$ for small $\delta$. Then colour depending on where $c_i \|x\|^2$ lies.