%! TEX root = Ramsey.tex % vim: tw=50 % 21/11/2024 11AM \begin{proof} Note $\mathcal{U} + \mathcal{V} \in C_A$ (for some $A$) if and only if $A \in \mathcal{U} + \mathcal{V}$, which happens if and only if $\forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, x + y \in A$. This is equivalent to saying \[ \{x : \forall_{\mathcal{V}}, x + y \in A\} \in \mathcal{U} ,\] which is equivalent to $\mathcal{U} \in C_{\{x : \forall_{\mathcal{V}} y, x + y \in A\}}$, so the pre-image is open. \end{proof} Recall: $\bN$ is compact Hausdorff, with $\Nbb$ a dense subset, $+$ is left continuous, associative, and $\bN$ is non-empty. Goal: want $\mathcal{U}$ such that $\mathcal{U} + \mathcal{U} = \mathcal{U}$, i.e. idempotent. \begin{proposition}[Idempotent lemma] \label{prop:2.16} % Proposition 2.16 There exists $\mathcal{U} \in \bN$ such that $\mathcal{U} = \mathcal{U} + \mathcal{U}$. \end{proposition} \begin{proof} (Warning: we will use Zorn's lemma :O) Start with $M \subseteq \bN$ such that $M + M \defeq \{x + y : x, y \in M\} \subseteq M$. Seek $M \subseteq \bN$, non-empty, compact and minimal with the property that $M + M \subseteq M$ (hope to show $M$ is a singleton). Proof of existence: there exists such a set, namely $\bN$ itself. Look at all such $M$ -- this set is not empty. By Zorn's lemma, it is enough to show that if $(M_i)_{i \in I}$ is a collection of such sets that is also a chain, then $M = \bigcap_{i \in I} M_i$ has this property also ($M + M \subseteq M$, $M$ is compact). Compact: We are in a compact Hausdorff space, so a subspace is compact if and only if it is closed. Since the $M_i$ are closed we have that $M$ is closed, hence $M$ is compact. Why $M + M \subseteq M$? Let $x, y \in M$, $x, y \in M_i$ for all $i$. Then $x + y \in M_i + M_i \subseteq M_i$ for all $i$, hence $x + y \in M_i$ for all $i$, hence $x + y \in M$. So $M + M \subseteq M$. Also $M$ is non-empty: $(M_i)_{i \in M}$ have the finite intersection property (as they are a chain). Since they are closed, we get that the intersection is non-empty. Therefore, by Zorn's lemma, there exists a minimal $M$, which is non-empty, compact such that $M + M \subseteq M$. Pick $x \in M$. Look at $M + x$ and we want to show that this is $M$. Claim: $M + x = M$. Proof: $M + x \subseteq M + M \subseteq M$. Check: \begin{itemize} \item non-empty \item compact, as continuous image ($\bullet+ x$) of a compact set \item $(M + x) + (M + x) = (M + x + M) + x \subseteq M + x$ \end{itemize} So by minimality $M + x = M$. In particular, there exists $y \in M$ such that $y + x = x$. Consider $T = \{y \in M : y + x = x\}$. Claim: $T = M$. Since $T \subseteq M$, it's enough to show (by minimality) that $T$ is compact, non-empty and $T + T \subseteq T$. Indeed: \begin{itemize} \item non-empty: $y \in T$ \item $T$ compact as $T$ is the pre-image of a singleton (which is compact hence closed), thus closed, thus compact. \item for $T + T \subseteq T$: $y, z \in T$, $y + x = x$, $z + x = x$ so $y + z + x = y + x = x$ hence $y + z \in T$. So $T + T \subseteq T$. \end{itemize} By minimality, $T = M$. So $\{y : y + x = x\} = M$, hence $x + x = x$. \end{proof} \begin{remark*} $M = \{x\}$. \end{remark*} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item The finite subgroup question: can we find a non-trivial subgroup of $\bN$? For example, $\mathcal{U}$, $\mathcal{U} + \mathcal{U} \neq \mathcal{U}$, $\mathcal{U} + \mathcal{U} + \mathcal{U} = \mathcal{U}$? Solved by Zeleyum (1996) -- No! \item Can an \gls{ultra} ``absorb'' another \gls{ultra}? That is, $\mathcal{U} \neq \mathcal{V}$ such that all $\mathcal{U} + \mathcal{U}$, $\mathcal{U} + \mathcal{V}$, $\mathcal{V} + \mathcal{U}$, $\mathcal{V} + \mathcal{V}$ are equal to $\mathcal{V}$? Totally open (until it was show that the answer is yes)! \end{enumerate} \end{remark*} \begin{proof}[Proof of \nameref{thm:2.11}] (If $\Nbb$ is finitely coloured, there exists $(x_n)_{n = 1}^\infty$ such that $\FS(x_1, x_2, \ldots)$ is monochromatic). Let $A_1, A_2, \ldots, A_k$ be the colour classes ($A_1 \sqcup A_2 \sqcup \cdots \sqcup A_k = \Nbb$) and $\mathcal{U}$ an idempotent \gls{ultra}. Claim: $A_i \in \mathcal{U}$ for some $i$ (this is because \glspl{ultra} are \emph{prime}: whenever we have a finite union lying in the \gls{ultra} we have at least one of the components lying in the \gls{ultra}, else have $A_i^c \in \mathcal{U}$ for each $i$, hence $A_1^c \cap \cdots \cap A_k^c \in \mathcal{U}$, but this is $(A_1 \cup \cdots \cup A_k)^c$, contradicting the fact that $A_1 \cup \cdots \cup A_k \in \mathcal{U}$). Let $A = A_i \in \mathcal{U}$. Therefore we have $\forall_{\mathcal{U}} y, y \in A$. Then: \begin{enumerate}[(1)] \item $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, y \in A$ \item $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, x \in A$ \item $A \in \mathcal{U} + \mathcal{U} = \mathcal{U}$ gives that $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, x + y \in A$. \end{enumerate} Then (1) and (2) and (3) give: \[ \forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, \FS(x, y) \subseteq A .\] Now fix $x_1 \in A$ such that \[ \forall_{\mathcal{U}} y, \FS(x_1 x) \subseteq A .\] Assume we have found $x_1, \ldots, x_n$ such that \begin{align*} \forall_{\mathcal{U}} y, \FS(x_1, \ldots, x_n, y) &\subseteq A \\ \ub{\{y : \FS(x_1, \ldots, x_n, y) \subseteq A\}}_{\eqdef B} &\in \mathcal{U} = \mathcal{U} + \mathcal{U} \end{align*} Then have $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, x + y \in B$. \begin{enumerate}[(1)] \item $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, \FS(x_1, \ldots, x_n, y) \subseteq A$ \item $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, \FS(x_1, \ldots, x_n, x) \subseteq A$ \item $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, \FS(x_1, \ldots, x_n, y) \subseteq A$. \end{enumerate} Then (1), (2) and (3) give: \[ \forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, \FS(x_1, \ldots, x_n, y) \subseteq A .\] Thus fix $x_{n + 1} \gg x_n$. Have $\forall_{\mathcal{U}} y, \FS(x_1, \ldots, x_n, y) \subseteq A$. Then done by induction. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Very few other infinite \gls{pr} equations are known. In particular, there does not exist a ``\hyperref[rado]{Rado}-type'' theorem of iff. \item The consistency theorem no longer holds. \[ \FS_{12}(x_1, x_2, \ldots) = .cb\sum_{i \in I} x_i + 2\sum_{i \in J} x_i, \max I < \min J \] is \gls{pr} (special case of Milliken-Taylor theorem). It was shown in 1995 that $\mathrm{FS}_{12}(x_1, x_2, \ldots)$ and $\FS(x_1, x_2, \ldots)$ are incompatible. \item Trivially from Hindman, $\{x_n\}_{n = 1}^\infty \cup \{x_i + x_i\}$ is \gls{pr}. Any proof of this without Hindman? Not known! \end{enumerate} \end{remark*}