%! TEX root = Ramsey.tex % vim: tw=50 % 19/11/2024 11AM \begin{proof} $\bN$ is Hausdorff: Let $\mathcal{U} \neq \mathcal{V}$ be two \glspl{ultra}. Then there exists $A \in \mathcal{U}$ such that $A \notin \mathcal{V}$. Then $\mathcal{U} \in C_A$ (and $C_A$ is open), and $A^c \in \mathcal{V}$, hence $\mathcal{V} \in C_{A^c}$ (and $C_{A^c}$ is open). Note $C_A \cap C_{A^c} = \emptyset$. So indeed $\bN$ is Hausdorff. $\bN$ is compact: want to show that every open cover has a finite subcover. This is equivalent to showing that if a collection of closed sets has the property that no finite subset covers $\bN$, then the whole collection doesn't cover $\bN$. This is equivalent to showing that if you have a collection of closed sets such that they have the finite intersection property (for any $J \subset I$ finite, $\bigcap_{i \in J} F_i \neq \emptyset$), then their intersection is non-empty. Further, in the first sentence we can without loss of generality that the open sets are basis sets (i.e. of the form $C_A$), and carrying this forward tells us that we may assume that the closed sets in the last sentence are of the form $C_A^c$, or equivalently, of the form $C_A$. We are given some closed, non-empty sets in $\bN$. Without loss of generality, they are all $C_A$ for some $A \neq \emptyset$. Suppose $(C_{A_i})_{i \in I}$ with the finite intersection property. First note $C_{A_{i_1}} \cap C_{A_{i_2}} \cap \cdots \cap C_{A_{i_k}} = C_{A_{i_1} \cap \cdots \cap A_{i_k}} \neq \emptyset$, hence $A_{i_1} \cap \cdots \cap A_{i_k}$. So let $\mathcal{F} = \{A : A \supset A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k} \text{ for some $(A_{i_j})_{j = 1}^n$}\}$. $\mathcal{F}$ is a \gls{filt} because: \begin{enumerate}[(1)] \item $\emptyset \notin \mathcal{F}$ \item $B \supset A \implies B \in \mathcal{F}$ \item If $A \supset \bigcap A_{i_j}$, $B \supset \bigcap A_{k_j}$, then $A \cap B \supset \bigcap A_{i_j} \cap \bigcap A_{k_j}$ hence $A \cap B \in \mathcal{F}$. \end{enumerate} Let $\mathcal{U}$ be an \gls{ultra} extending $\mathcal{F}$. Note: $\forall A_i \in \mathcal{U}$ if and only if $\mathcal{U} \in C_{A_i} \forall i$. Hence $\mathcal{U} \in \bigcap A_{A_i} \implies \bigcap C_{A_i} \neq \emptyset$. Thus $\bN$ is compact. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item $\bN$ can be viewed as a subset $\mathcal{P}(\Nbb) \to \{0, 1\}$ or a subset of $\{0, 1\}^{\mathcal{P}(\Nbb)}$. The topology on $\bN$ comes from restricting the product topology on $\{0, 1\}^{\mathcal{P}(\Nbb)}$ and also $\bN$ is a closed subset of $\{0, 1\}^{\mathcal{P}(\Nbb)}$, hence it is compact by Tychonoff's theorem. \item $\bN$ is the biggest compact Hausdorff space in which $\Nbb$ is dense. In other words, if $X$ is compact and Hausdorff and $f : \Nbb \to X$, there exists a unique $\tilde{f}$ continuous that extends $f$, i.e. $\tilde{f} : \bN \to X$ makes the diagram \begin{picmath} \begin{tikzcd} \Nbb \ar[r, "f"] \ar[d] & X \\ \bN \ar[ur, dashed, "\tilde{f}"] \end{tikzcd} \end{picmath} commute. \item $\bN$ is called the Stone-C\v{e}ch Compactification of $\Nbb$. \end{enumerate} \end{remark*} \begin{notation*} Let $p$ be a statement and $\mathcal{U}$ an \gls{ultra}. We write \[ \forall_{\mathcal{U}} x, p(x) \] to mean $\{x : p(x)\} \in \mathcal{U}$ (``$p(x)$ holds for ($\mathcal{U}$-)most $x$''). \end{notation*} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item If $\mathcal{U}$ is \gls{princ}, then $\mathcal{U} = \tilde{n}$ so $\forall_{\mathcal{U}} x, p(x) \iff p(n)$. \item If $\mathcal{U}$ is not \gls{princ} then let's consider $\forall_{\mathcal{U}} x, (4 < x)$. This says $\{x : x > 4\} \in \mathcal{U}$. If not true, then $\{x : x > 4\}^c \in \mathcal{U}$, i.e. $\{1, 2, 3, 4\} \in \mathcal{U}$. Then $\{1\} \cup \{2\} \cup \{3\} \cup \{4\} \in \mathcal{U}$ hence for some $1 \le i \le 4$, $\{i\} \in \mathcal{U}$, so $\mathcal{U}$ is \gls{princ}, contradiction. \end{enumerate} \end{example*} \begin{fcprop}[] \label{prop:2.15} % Proposition 2.15 Assuming: - $\mathcal{U}$ an \gls{ultra} - $p, q$ statements Then: \begin{enumerate}[(i)] \item $\forall_{\mathcal{U}} x, (p(x) \text{ and } q(x))$ if and only if $\forall_{\mathcal{U}} x, p(x)$ and $\forall_{\mathcal{U}} x, q(x)$ \item $\forall_{\mathcal{U}} x, (p(x) \text{ or } q(x))$ if and only if $\forall_{\mathcal{U}} x, p(x)$ or $\forall_{\mathcal{U}} x, q(x)$ \item $\forall_{\mathcal{U}} x, p(x)$ is false if and only if $\forall_{\mathcal{U}} x, \neg p(x)$ \end{enumerate} \end{fcprop} \begin{proof} Let $A = \{x : p(x)\}$, $B = \{x : q(x)\}$. \begin{enumerate}[(i)] \item $A \cap B \in \mathcal{U}$ if and only if $A \in \mathcal{U}$ and $B \in \mathcal{U}$ \item $A \cup B \in \mathcal{U}$ if and only if $A \in \mathcal{U}$ or $B \in \mathcal{U}$ \item $A \notin \mathcal{U}$ if and only if $A^c \in \mathcal{U}$ \qedhere \end{enumerate} \end{proof} \begin{warning*} $\forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, p(x, y)$ is not necessarily the same as $\forall_{\mathcal{V}} y, \forall_{\mathcal{U}} x, p(x, y)$ (there is even a counterexample in the case $\mathcal{U} = \mathcal{V}$!). \end{warning*} \begin{example*} Let $\mathcal{U}$ be a non-principal \gls{ultra}. Let $p(x, y) = x < y$. Then: \begin{itemize} \item $\forall_{\mathcal{U}} x \forall_{\mathcal{U}} y, x < y$ is true (since $\forall_{\mathcal{U}} y, x < y$ is always true) \item $\forall_{\mathcal{U}} y \forall_{\mathcal{U}} x, x < y$ is false (since $\forall_{\mathcal{U}} x, x < y$ is always false) \end{itemize} \end{example*} \begin{moral*} Don't swap quantifiers!! \end{moral*} \textbf{Cool fact:} we can ``add'' \glspl{ultra}. \begin{definition*}[Addition of ultrafilters] Let $\mathcal{U}, \mathcal{V}$ be \glspl{ultra}. Then we define \[ \mathcal{U} + \mathcal{V} = \{A \subseteq \Nbb : \forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, x + y \in A\} .\] \end{definition*} \begin{example*} $\tilde{m} + \tilde{n} + \widetilde{m + n}$. \end{example*} Proof that $\mathcal{U} + \mathcal{V}$ is a \gls{filt}: \begin{enumerate}[(1)] \item $\emptyset \notin \mathcal{U} + \mathcal{V}$ \item If $A \in \mathcal{U} + \mathcal{V}$ and $B \supset A$ then trivially $B \in \mathcal{U} + \mathcal{V}$ \item Intersections: if $A \in \mathcal{U} + \mathcal{V}$ and $B \in \mathcal{U} + \mathcal{V}$, then: \begin{itemize} \item $\forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, x + y \in A$ \item $\forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, x + y \in B$ \end{itemize} hence by \cref{prop:2.15}(i) applied twice, we have $\forall_{\mathcal{U}} x, \forall_{\mathcal{U}} y, x + y \in A \cap B$. \end{enumerate} Hence $\mathcal{U} + \mathcal{V}$ is a \gls{filt}. Now check that it is an \gls{ultra}: Suppose $A \notin \mathcal{U} + \mathcal{V}$, i.e. $\forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, x + y \in A$ is false. By \cref{prop:2.15}(iii) applied twice, this is equivalent to $\forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, x + y \in A^c$. Hence $A^c \in \mathcal{U} + \mathcal{V}$. So $\mathcal{U} + \mathcal{V}$ is indeed an \gls{ultra}. \begin{remark*} The addition of \glspl{ultra} is associative, i.e. \[ \mathcal{U} + (\mathcal{V} + \mathcal{W}) = (\mathcal{U} + \mathcal{V}) + \mathcal{W} .\] To show this, we claim $A \in \text{LHS}$ if and only if \[ \forall_{\mathcal{U}} x, \forall_{\mathcal{V}} y, \forall_{\mathcal{W}} z, x + y + z \in A .\] By similar reasoning, one can also show $A \in \text{RHS}$ if and only if the above holds, hence $A \in \text{LHS}$ if and only if $A \in \text{RHS}$, which establishes the desired equality. Let $A \in \mathcal{U} + (\mathcal{V} + \mathcal{W})$. So $\forall_{\mathcal{U}}x, (\forall_{\mathcal{V} + \mathcal{W}} y, x + y \in A)$. Let $B_x = \{y : x + y \in A\}$. TODO \end{remark*} Last piece of the puzzle: $+$ is left continuous: we show that $\mathcal{U} \mapsto \mathcal{U} + \mathcal{V}$ is continuous (for any fixed $\mathcal{V}$).