%! TEX root = Ramsey.tex % vim: tw=50 % 14/11/2024 11AM \setcounter{subsection}{1}% \subsection{Ultrafilters} \textbf{Aim:} \glssymboldefn{FS}% \begin{fcthm}[Hindman's Theorem] \label{thm:2.11} % Theorem 2.11 Assuming: - $\Nbb$ is finitely coloured Then: there exists infinitely many $(x_n)_{n \ge 1}$ such that \[ \FSinternal(X_1) \defeq \left\{ \sum_{i \in I} x_i : \emptyset \neq I \subseteq \Nbb, I \text{ finite} \right\} \] is monochromatic. \end{fcthm} This is the first infinite \gls{pr} system in the course. \begin{definition*}[Filter] \glsnoundefn{filt}{filter}{filters}% A filter is a non-empty collection $\mathcal{F}$ of subsets of $\Nbb$ satisfying: \begin{enumerate}[(a)] \item $\emptyset \notin \mathcal{F}$. \item If $A \in \mathcal{F}$, $A \subset B$, then $B \in \mathcal{F}$ (`upset'). \item If $A \in \mathcal{F}$, $B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$ (closed under finite intersections). \end{enumerate} \end{definition*} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\mathcal{F} = \{A \subseteq \Nbb : 1 \in A\}$ is a \gls{filt}. \item $\mathcal{F} = \{A \subseteq \Nbb : 1, 2 \in A\}$ is a \gls{filt}. \item \glsnoundefn{cofilt}{cofinite filter}{cofinite filter}% $\mathcal{F} = \{A \subseteq \Nbb : \text{$A^c$ is finite}\}$ is a \gls{filt}, called the \emph{cofinite filter}. \item $\mathcal{F} = \{A \subseteq \Nbb : \text{$A$ is infinite}\}$. This is not a \gls{filt}, since the intersection $\{\text{odd numbers}\} \cap \{\text{even numbers}\}$ is $\emptyset$, which is not in $\mathcal{F}$. \item $\mathcal{F} = \{A \subseteq \Nbb : \{\text{even numbers}\} \setminus A \text{ is finite}\}$ is a \gls{filt}. \end{enumerate} \end{example*} \begin{definition*}[Ultrafilter] \glsnoundefn{ultra}{ultrafilter}{ultrafilters}% An \emph{ultrafilter} is a maximal \gls{filt}. \end{definition*} \begin{example*} \phantom{} \begin{enumerate} \item \glsnoundefn{princ}{principal}{principal}% $\mathcal{U} = \{A \subseteq \Nbb : x \in A\}$, $B \notin \mathcal{U}$, then $B^c$ will contain $x$, so $B^c \in \mathcal{U}$, but $B^c \cap B = \emptyset$ so we cannot extend $\mathcal{U}$ by adding $B$ to it. So $\mathcal{U}$ is maximal. This is called the \emph{principal filter} at $x$. \item In the examples above: (1) is an \gls{ultra}, (2) is not as (1) extends it, (3) is not as (5) extends it, and (5) is not as $\mathcal{F}' = \{A \subseteq \Nbb : \{\text{multiples of $4$}\} \setminus A \text{ is finite}\}$ extends it. \end{enumerate} \end{example*} \begin{proposition}[] \label{prop:2.12} % Proposition 2.12 \begin{iffc} \lhs $\mathcal{U}$ is an \gls{ultra} \rhs for all $A \subseteq \Nbb$, either $A \in \mathcal{U}$ or $A^c$ is in $\mathcal{U}$. \end{iffc} \end{proposition} \begin{iffproof} \leftimpl If I try to extend $\mathcal{U}$ by adding in some $A \notin \mathcal{U}$, then since $A^c \in \mathcal{U}$, we would also have to have $A \cap A^c \in \mathcal{U}$, which violated one of the properties of being a \gls{filt}. \rightimpl Suppose $\mathcal{U}$ is an \gls{ultra} and there exists $A$ such that $A, A^c$ are not in $\mathcal{U}$. By maximality, if $A$ is not in $\mathcal{U}$ then there exists $B \in \mathcal{U}$ such that $A \cap B = \emptyset$. Indeed, suppose not. Then \[ \mathcal{F}' = \{S : S \supseteq A \cap B \text{ for some $B \in \mathcal{U}$}\} \] extends it (the only way this can fail to be a \gls{filt} is if $\emptyset \in \mathcal{F}'$, which would require a $B$ such that $A \cap B = \emptyset$). Then $B \subseteq A^c$, so $A^c \in \mathcal{U}$, contradicting the initial assumption. \end{iffproof} \begin{remark*} If $\mathcal{U}$ is an ultrafilter and $A \in \mathcal{U}$, $A = B \cup C$. Then either $B$ or $C$ is in $U$. Indeed, suppost not. Then $B^c, C^c \in \mathcal{U}$, hence $B^c \cap C^c \in \mathcal{U}$, i.e. $B^c \cap C^c = (B \cup C)^c$ is in $\mathcal{U}$. Hence $A \cap A^c = \emptyset \in \mathcal{U}$, a contradiction. \end{remark*} \begin{fcprop}[] \label{prop:2.13} % Proposition 2.13 Assuming: - $\mathcal{F}$ a \gls{filt} Then: there exists an \gls{ultra} $\mathcal{U}$ extending $\mathcal{F}'$. \end{fcprop} \begin{proof} By Zorn's lemma, it is enough to show that any chain of \glspl{filt} extending $\mathcal{F}$ has an upper bound. Let $(F_i)_{i \in I}$ be a chain of \glspl{filt} containing $\mathcal{F}$, i.e. for all $i \neq j$ either $F_i \subseteq F_j$ or $F_j \subseteq F_i$. Let $F = \bigcup_{i \in I} F_i$. Need to show $F$ is a \gls{filt}: \begin{enumerate}[(1)] \item $\emptyset \notin F$ since $\emptyset \notin F_i$ for each $i$. \item If $A \in F$ and $A \subseteq B$ then $A \in F_i$ for some $i$, and then we have $B \in F_i$ for this same $i$ (as $F_i$ is a \gls{filt}), so $B \in F$. \item If $A, B \in F$ then say $A \in F_i$, $B \in F_j$. Since $(F_i)$ is a chain, we can suppose without loss of generality that $F_i \subseteq F_j$. Then $A, B \in F_j$, so $A \cap B \in F_j \subseteq F$, so $A \cap B \in F$. \end{enumerate} and also clearly $F$ extends $\mathcal{F}$. So $F$ is an upper bound. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Any \gls{ultra} that extends the \gls{cofilt} cannot be \gls{princ}. Suppose $\mathcal{F}$ is the \gls{cofilt} and $\mathcal{U}$ is a \gls{filt} extending it. If $\mathcal{U} = \mathcal{U}_x$ then $\{x\}^c \in \mathcal{F} \subseteq \mathcal{U}$ but we also have $\{x\} \in \mathcal{U}$, contradiction. \item If $\mathcal{U}$ is non-\gls{princ}, then it must extend the \gls{cofilt}. If $\mathcal{U}$ were to contain a finite set $A = \{x_1\} \cup \cdots \cup \{x_i\}$, so there exists $i$ such that $\{x_i\} \in \mathcal{U}$ (contradiction). If $A$ is a set in the \gls{cofilt}, then $A^c$ is finite, so $A^c \notin \mathcal{U}$, hence $A \in \mathcal{U}$. \item The Axiom of Choice is absolutely needed for the existence of non-\gls{princ} \glspl{ultra}. \end{enumerate} \end{remark*} \begin{definition*}[$beta N$] \glssymboldefn{bN}% The set of \glspl{ultra} on $\Nbb$ is called $\beta\Nbb$. We define a topology on $\beta\Nbb$ as the one induced by the following base of open sets \[ C_A \defeq \{\mathcal{U} : A \in \mathcal{U}\} .\] \end{definition*} We can see that $\bigcup_A C_A = \beta\Nbb$ and $C_A \cap C_B = C_{A \cap B}$ because $A \cap B \in \mathcal{U}$ if and only if $A, B \in \mathcal{U}$. Open sets are $\bigcup_{i \in I} C_{A_i}$. Closed sets are $\bigcap_{i \in I} C_{A_i}$ (using the fact that $\left(\bigcup_{i \in I} C_{A_i}\right)^c = \bigcap_{i \in I} C_{A_i}^c = \bigcap_{i \in I} C_{A_i^c}$). \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item $\bN \setminus C_A = C_{A^c}$. \item We can view $\Nbb$ embedded in $\bN$ by identifying $n \in \Nbb$ with the \gls{princ} \gls{ultra} at $n$, i.e. $\tilde{n} = \{A : n \in A\}$, $\{\tilde{1}, \tilde{2}, \ldots\} \leftrightarrow \Nbb$. Each point in $\Nbb$ is isolated because $C_{\{n\}} = \tilde{n}$. Under this, $\Nbb$ is dense in $\bN$: for $C_A$ an open set and $n \in A$ we have $\tilde{n} \in C_A$. \end{enumerate} \end{remark*} \begin{proposition} \label{prop:2.14} % Proposition 2.14 $\bN$ is a compact Hausdorff space. \end{proposition}