%! TEX root = Ramsey.tex % vim: tw=50 % 10/10/2024 11AM % 1. Monochromatic sets % 2. Partition regular systems % 12 lectures for sections 1 and 2 % 3. Euclidean ramsey --> 4 lectures % 3 example sheets \newpage \section{Ramsey's Theorem} \begin{notation*} $\Nbb = \{1, 2, \ldots\}$, $[n] = \{1, 2, \ldots, n\}$ for a set $X$, $r \ge 1$, $X^{(r)} = \{A \subseteq X, |A| = r\}$. \end{notation*} Given a 2-colouring of $\Nbb^{(2)}$, are we guaranteed to have an infinite monochromatic set (i.e. $M \subseteq \Nbb$, $M$ infinite such that the colouring is constant on $M^{(2)}$)? \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\{i, j\}$ red if $i + j$ even, odd otherwise. Then $M = \{n : \text{$n$ even}\}$ works. \item $\{i, j\}$ red if $\max\{n : 2^n \mid i + j\}$ is even, blue otherwise. Then $M = \{4^0, 4^1, \ldots\}$ works. \item $\{i, j\}$ red if $i + j$ has an even number of distinct prime divisors, and blue otherwise. No explicit $M$ is known! \end{enumerate} \end{example*} \begin{fcthm}[Ramsey's Theorem for pairs] \label{ramsey_pairs}% % Theorem 1.1 Assuming: - $\Nbb^{(2)}$ are 2-coloured (i.e. $c : \Nbb^{(2)} \to \{1, 2\}$). Then: there exists $M$ infinite monochromatic. \end{fcthm} \begin{proof} Pick $a_1 \in \Nbb$. Then there exists an infinite set $A_1$ such that $c(a_1 i) = c_1$ for all $i \in A_1$. Pick $a_2 \in A_1$ and find $A_2$ (infinite) such that $c(a_2 i) = c_2$ for all $i \in A_2$. Keep on doing this. We end up with $a_1 < a_2 < a_3 < \cdots < a_k < \cdots$ and $A_1 \supset A_2 \supset \cdots$ such that $c(a_i j) = c_i$ for all $j \in A_i$. One colour appears infinitely many times $c_{i_1} = c_{i_2} = \cdots = c_{i_k} = \cdots = e$. Now note $M = \{a_{i_1}, a_{i_2}, a_{i_3}, \ldots\}$ is a monochromatic set. \end{proof} \begin{center} \includegraphics[width=0.6\linewidth]{images/e8e76d4829924506.png} \end{center} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item The same proof works for $k$ colours. This is referred to as a ``$2$-pass'' proof. Alternatively: if we have colours $1, 2, \ldots, k$, then we can consider $1$ to be red, and everything else to be blue. Then using the above result and induction, we get an alternative way to prove the theorem for greater than $2$ colours. \item Infinite monochromatic is \textbf{very} different than arbitrarily large monochromatic. For example: suppose we write $A_1 = \{1, 2\}$, $A_2 = \{3, 4, 5\}$, $A_3 = \{6, 7, 8, 9\}$ and so on. Say $\{i, j\}$ is red if there exists $k$ such that $i, j \in A_k$, and blue otherwise. Then there exist arbitrarily large monochromatic red sets, but no infinite monochromatic red set. \end{enumerate} \end{remark*} What about $\Nbb^{(r)}$ with $r = 3$? \begin{example*} $r = 3$, $\{i, j, k\}$, $i < j < k$ red if and only if $i \mid j + k$. Then $M = \{2^0, 2^1, 2^2, \ldots\}$ is monochromatic. \end{example*} \begin{fcthm}[Ramsey's Theorem for $r$-sets] \label{ramsey_rsets}% % Theorem 1.2 Assuming: - $\Nbb^{(r)}$ is finitely coloured. Then: there exists a monochromatic infinite set. \end{fcthm} \begin{proof} $r = 1$ pigeonhole, $r = 2$ is \cref{ramsey_pairs}. Prove this by induction. Assume it is true for $r - 1$. Given $c : \Nbb^{(r)} \to [k]$, we must find $M$ (infinite and monochromatic). Pick $a_1 \in \Nbb$. Look at the $r - 1$ sets of $\Nbb \setminus \{a_1\}$. Define $c' : (\Nbb \setminus \{a_1\})^{(r - 1)} \to [k]$ via $c' (F) = c(F \cup \{a_1\})$. By induction there exists $A_1 \subseteq \Nbb \setminus \{a_1\}$ such that $c'$ is constant on it, say constantly equal to $c_1$. Now pick $a_2 \in A_1$ and induce $c' : (A_1 \setminus \{a_2\})^{(r - 1)} \to [k]$ defined by $c'(F) = c(F \cup \{a_2\})$. By induction there exists $A_2 \subset A_1 \setminus \{a_2\}$ such that $c'$ is constant on it, say equal to $c_2$. Continuing this, we end up with $a_1, a_2, \ldots$ and sets $A_1, A_2, \ldots$ such that $A_{i + 1} \subset A_i \setminus \{a_{i + 1}\}$ with $c(F \cup \{a_i\}) = c_i$ for all $F \subset A_{i + 1}$, $|F| = r - 1$. Some colour must appear infinitely many times: say $c_{i_1} = c_{i_2} = c_{i_3} = \cdots = c$. Check: $M = \{a_{i_1}, a_{i_2}, \ldots\}$ is monochromatic. \end{proof} \begin{example*} Applications: \begin{enumerate}[(1)] \item In a totally ordered set, any sequence has a monotone subsequence. \begin{proof} Let the sequence be $x_1, x_2, \ldots$. Say $\{i < j\}$ is red if $x_i \le x_j$, and blue otherwise. By \cref{ramsey_pairs}, we may find $M = \{i_1 < i_2 < \cdots\}$ monochromatic. If $M$ is red, then the sequence $x_{i_1}, x_{i_2}, x_{i_3}, \ldots$ is increasing, and if $M$ is blue then the sequence is strictly decreasing. \end{proof} \begin{center} \includegraphics[width=0.6\linewidth]{images/7925b4f77e6445f8.png} \end{center} \item Using a slightly adjusted argument, we can insist that the function given by $(i_j, x_{i_j})$ is either concave or convex. We do this by: for a triple $(i_{j_1}, i_{j_2}, i_{j_k})$ we colour it convex or concave. Then apply \cref{ramsey_rsets}. \end{enumerate} \end{example*} From \cref{ramsey_rsets} we can deduce: \begin{fcthm}[Finite Ramsey] Assuming: - $r \ge 1$, $k \ge 1$, $m \ge 1$ Then: there exists $n \in \Nbb$ such that whenever $[n]^{(r)}$ is $k$-coloured, we can find a monochromatic set of size $m$. \end{fcthm} \begin{proof} Suppose not. Then for each $n$ we can find $c_n : [n]^{(r)} \to [k]$ with no monochromatic $m$-sets. Note that there are only finitely many ways to $k$-colour $[r]^{(r)}$. So infinitely many $c_n$ will agree on $[r]^{(r)}$. Pick $A_1$ such that for all $n \in A_1$, \[ c_n|_{[r]^{(r)}} = dr : [r]^{(r)} \to [k] .\] We can do the same on $[r + 1]^{(r)}$ and produce some $A_2 \subset A_1$ such that $c_n|_{[r + 1]^{(r)}}$ is constant on $A_2$. Continuing this, we get $\cdots \subset A_n \subset A_{n - 1} \subset \cdots \subset A_1$. They satisfy: \begin{enumerate}[(1)] \item There is no monochromatic $m$-set for any $d_n : [n]^{(r)} \to [k]$ (because $d_n = c_i|_{[n]^{(r)}}$). \item These $d_n$'s are nested: $d_j|_{[i]^{(r)}} = d_i$ for $j > i$. \end{enumerate} Finally: colour $\Nbb^{(r)}$ via $c(F) = d_n(F)$, where $n$ is any integer $n \ge \max F$. One can see that this is well defined, and gives a contradiction to \cref{ramsey_rsets}. \end{proof}