%! TEX root = LF.tex % vim: tw=50 % 19/10/2024 12PM \begin{corollary}[] \label{coro_4_5} % Corollary 4.5 Let $(K, \absval|\bullet|)$ be a complete \gls{dvf}. Let \[ f(X) = a_nX^n + \cdots + a_n \in K[X] \] with $a_0, a_n \neq 0$. If $f(X)$ is irreducible, then $|a_i| \le \max(|a_0|, |a_n|)$ for all $i$. \end{corollary} \begin{proof} Upon scaling, we may assume $f(X) \in \O_K[X]$ with $\max_i (|a_i|) = 1$. Thus we need to show that $\max(|a_0|, |a_n|) = 1$. If not, let $r$ minimal such that $|a_r| = 1$, then $0 < r < n$. Thus we have \[ \ol{f}(X) = X^r(a_r + \cdots + a_n X^{n -r}) \pmod m .\] Then \cref{hensel_2} implies $f(X) = g(X) h(X)$ with $0 < \deg < n$. \end{proof} \newpage \section{Teichm\"uller lifts} \begin{fcdefn}[Perfect] \glsadjdefn{perf}{perfect}{ring}% % Definition 5.1 A ring $R$ of characteristic $p > 0$ (prime) is a \emph{perfect ring} if the Frobenius $x \mapsto x^p$ is a bijection. A field of characteristic $p$ is a perfect field if it is perfect as a ring. \end{fcdefn} \begin{remark*} Since $\char R = p$, $(x + y)^p = x^p + y^p$, so Frobenius is a ring homomorphism. \end{remark*} \begin{example*} \phantom{} \begin{enumerate}[(i)] \item $\Fbb_{p^n}$ and $\ol{\Fp}$ are perfect fields. \item $\Fp[t]$ is not perfect, because $t \notin \Im(\Frob)$. \item $\Fp(t^{\frac{1}{p^\infty}}) \defeq \Fp(t, t^{\frac{1}{p}}, t^{\frac{1}{p^2}}, \ldots)$ is a perfect field (called the perfection of $\Fp(t)$). \end{enumerate} \end{example*} \textbf{Fact:} A field of characteristic $p > 0$ is perfect if and only if any finite extension of $k$ is separable. \begin{fcthm}[] \label{thm_5_2} % Theorem 5.2 Assuming: - $(K, \absval|\bullet|)$ is a complete \gls{dvf} - such that $k \defeq \O_K / m$ is a perfect field of characterist $p$ Then: there exists a unique map $[\bullet] : k \to \O_K$ such that \begin{enumerate}[(i)] \item $a \equiv [a] \bmod m$ for all $a \in k$ \item $[ab] = [a][b]$ for all $a, b \in k$ \end{enumerate} Moreover if $\char \O_K = p$, then $[\bullet]$ is a ring homomorphism. \end{fcthm} \begin{fcdefn} \glsnoundefn{teich}{Teichm\"uller}{NA}% \glsnoundefn{teichl}{Teichm\"uller lift}{Teichm\"uller lifts}% \glssymboldefn{lift}% % Definition 5.3 The element $[a] \in \O_K$ constructed in \cref{thm_5_2} is the \emph{Teichm\"uller lift} of $a$. \end{fcdefn} \begin{fclemma}[] \label{lemma_5_4} % Lemma 5.4 Assuming: - $(K, \absval|\bullet|)$ is a complete \gls{dvf} - such that $k \defeq \O_K / m$ is a perfect field of characterist $p$ - $\pi \in \O_K$ a fixed \gls{unif} - $x, y \in \O_K$ such that $x \equiv y \bmod \pi^k$ ($k \ge 1$) Then: $x^p \equiv y^p \bmod \pi^{k + 1}$. \end{fclemma} \begin{proof} Let $x = y + u\pi^k$ with $u \in \O_K$. Then \begin{align*} x^p &= \sum_{i = 0}^{p} {p \choose i} y^{p - i}(u \pi^k)^i \\ &= y^p + \sum_{i = 1}^{p} {p \choose i} y^{p - 1} (u\pi^k)^i \end{align*} Since $\O_K / \pi \O_K$ has characteristic $p$, we have $p \in \pi\O_K$. Thus \[ {p \choose i} (u\pi^k)^i y^{p - i} \in \pi^{k + 1} \O_K \qquad \forall i \ge 1 ,\] hence $x^p \equiv y^p \bmod \pi^{k + 1}$. \end{proof} \begin{proof}[Proof of \cref{thm_5_2}] Let $a \in k$. For each $i \ge 0$ we choose a lift $y_i \in \O_K$ of $a^{\frac{1}{p^i}}$, and we define \[ x_i \defeq y_i^{p_i} .\] We claim that $(x_i)_{i = 1}^\infty$ is a Cauchy sequence and its limit is independent of the choice of $y_i$. By construction, $y_i \equiv y_{i + 1}^p \bmod \pi$. By \cref{lemma_5_4} and induction on $k$, we have $y_i^{p^k} \equiv y_{i + 1}^{p^{k + 1}}$ and hence $x_i \equiv x_{i + 1} \bmod \pi^{i + 1}$ (take $i = p$). Hence $(x_i)_{i = 1}^\infty$ is Cauchy, so $x_i \to x \in \O_K$. Suppose $(x_i')_{i = 1}^\infty$ arises from another choice of $y_i'$ lifting $a_i^{\frac{1}{p^i}}$. Then $(x_i')_{i = 1}^\infty$ is Cauchy, and $x_i' \to x' \in \O_K$. Let \[ x_i'' = \begin{cases} x_i & \text{$i$ even} \\ x_i' & \text{$i$ odd} \end{cases} .\] Then $x_i''$ arises from lifting \[ y_i'' = \begin{cases} y_i & \text{$i$ even} \\ y_i & \text{$i$ odd} \end{cases} .\] Then $x_i''$ is Cauchy and $x_i'' \to x$, $x_i'' \to x'$. So $x = x'$ and hence $x$ is independet of the choice of $y_i$. So we may define $\lift[a] = x$. Then $x_i = y_i^{p^i} \equiv (a^{\frac{1}{p^i}})^{p^i} \equiv a \bmod \pi$. Hence $x \equiv a \bmod \pi$. So (i) is satisfied. We let $b \in k$ and we choose $u_i \in \O_K$ a lift of $b^{\frac{1}{p^i}}$, and let $z_i \defeq u_i^{p^i}t$. Then $\lim_{i \to \infty} z_i = \lift[b]$. Now $u_i y_i$ is a lift of $(ab)^{\frac{1}{p^i}}$, hence \[ \lift[ab] = \lim_{i \to \infty} x_i z_i = (\lim_{i \to \infty} x_i)(\lim_{i \to \infty} z_i) = \lift[a]\lift[b] .\] So (ii) is satisfied. If $\char K = p$, $y_i + u_i$ is a lift of $a^{\frac{1}{p^i}} + b^{\frac{1}{p^i}} = (a + b)^{\frac{1}{p^i}}$. Then \begin{align*} \lift[a + b] &= \lim_{i \to \infty} (y_i + u_i)^{p^i} \\ &= \lim_{i \to \infty} y_i^{p^i} + u_i^{p^i} \\ &= \lim_{i \to \infty} x_i + z_i \\ &= \lift[a] + \lift[b] \end{align*} Easy to check that $\lift[0] = 0$, $\lift[1] = 1$, and hence $\lift[\bullet]$ is a ring homomorphism. Uniqueness: let $\phi : k \to \O_K$ be another such map. Then for $a \in k$, $\phi(a^{\frac{1}{p^i}})$ is a lift of $a^{\frac{1}{p^i}}$. It follows that \begin{align*} \lift[a] &= \lim_{i \to \infty} \phi(a^{\frac{1}{p^i}})^{p^i} \\ &= \lim_{i \to \infty} \phi(a) \\ &= \phi(a) \qedhere \end{align*} \end{proof} \begin{example*} $K = \Qp$, $\lift[\bullet] : \Fp \to \Zp$, $a \in \Fp^\times$, $\lift[a]^{p - 1} = \lift[a^{p - 1}] = \lift[1] = 1$. So $\lift[a]$ is a $(p - 1)$-th root of unity. \end{example*} \begin{fclemma}[] % Lemma 5.6 Assuming: - $(K, \absval|\bullet|)$ complete \gls{dvf} - $k = \O_K / m \subseteq \ol{\Fp}$ - $a \in k^\times$ Then: $\lift[a]$ is a root of unity. \end{fclemma} \begin{proof} \begin{align*} a \in k^\times &\implies a \in \Fbb_{p^n}^\times \text{ for some $n$} \\ &\implies \lift[a]^{p^n - 1} = \lift[a^{p^n - 1}] = \lift[1] = 1 \qedhere \end{align*} \end{proof} \begin{fcthm}[] \label{thm_5_7} % Theorem 5.7 Assuming: - $(K, \absval|\bullet|)$ complete \gls{dvf} - $\char(K) = p > 0$ - $k$ is \gls{perf} Then: $K = k((t))$ ($k = \O_K / m$). \end{fcthm} \begin{proof} Since $K = \Frac(\O_K)$, it suffices to show $\O_K \cong k[[t]$. Fix $\pi \in \O_K$ a \gls{unif}, and let $\lift[\bullet] : k \to \O_K$ be the \glsref[teichl]{Teichm\"uller map} and define \begin{align*} \varphi : k[[t]] &\to \O_K \\ \varphi \left( \sum_{i = 0}^{\infty} a_i t^i \right) &= \sum_{i = 0}^\infty \lift[a_i] \pi^i \end{align*} Then $\varphi$ is a ring homomorphism since $\lift[\bullet]$ is, and it is a bijection by \cref{prop_3_5}(ii). \end{proof}