%! TEX root = LF.tex % vim: tw=50 % 15/10/2024 12PM Suppose $v$ is a \gls{dv} on $K$, $\pi \in \O_K$ a \gls{unif}. For $x \in K^\times$, let $n \in \Zbb$ such that $v(x) = nv(\pi)$. Then $u = \pi^{-n} x \in \O_K^\times$ and $x = u\pi^n$. In particular, $K = \O_K \left[ \frac{1}{\pi} \right]$ and hence $K = \Frac(\O_K)$. \begin{fcdefn}[Discrete valuation ring] % Definition 2.2 \glsnoundefn{dvr}{discrete valuation ring}{discrete valuation rings}% A ring $R$ is called a \emph{discrete valuation ring} (DVR) if it is a PID with exactly one non-zero prime ideal (necessarily maximal). \end{fcdefn} \begin{lemma} % Lemma 2.8 \phantom{} \begin{enumerate}[(i)] \item Let $v$ be a \gls{dv} on $K$. Then $\O_K$ is a \gls{dvr}. \item Let $R$ be a \gls{dvr}. Then there exists a \gls{valt} on $K \defeq \Frac(R)$ such that $R = \O_K$. \end{enumerate} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item $\O_K$ is a PID by \cref{lemma_2_6}. Hence any non-zero prime ideal is maximal and hence $\O_K$ is a \gls{dvr} since it is a local ring. \item Let $R$ be a \gls{dvr}, with maximal ideal $m$. Then $m = (\pi)$ for some $\pi \in R$. Since PIDs are UFDs, we may write any $x \in R \setminus \{0\}$ uniquely as $\pi^n u$ with $n \ge 0$, $u \in R^\times$. Then any $y \in K^\times$ can be written uniquely as $\pi^m u$ with $u \in R^\times$, $m \in \Zbb$. Define $v(\pi^m u) = m$; check $v$ is a \gls{valt} and $\O_K = R$. \qedhere \end{enumerate} \end{proof} \begin{example*} $\Zbb_{(p)}$, $k[[t]]$ ($k$ a field) are \glspl{dvr}. \end{example*} \newpage \section{The $p$-adic numbers} Recall that $\Qp$ is the completion of $\Qbb$ with respect to $\absp|\bullet|$. On Example Sheet 1, we will show that $\Qp$ is a field. We also show that $\absp|\bullet|$ extends to $\Qp$ and the associated \gls{valt} is \gls{disc}. \begin{fcdefn}[] % Definition 3.1 \glssymboldefn{Zp}% The ring of $p$-adic integers $\Zbb_p$ is the \gls{valt} ring \[ \Zbb_p = \{x \in \Qp \st \absp|x| \le 1\} .\] \end{fcdefn} \textbf{Facts:} $\Zp$ is a \gls{dvr}, with maximal ideal $p\Zp$, and non-zero ideals are given by $p^n \Zp$. \begin{proposition*}[] $\Zp$ is the closure of $\Zbb$ inside $\Qp$. In particular, $\Zp$ is the completion of $\Zbb$ with respect to $\absp|\bullet|$. \end{proposition*} \begin{proof} Need to show $\Zbb$ is dense in $\Zp$. Note $\Qbb$ is dense in $\Qp$. Since $\Zp \subseteq \Qp$ is open, we have that $\Zp \cap \Qbb$ is dense in $\Zp$. Now: \[ \Zp \cap \Qbb = \{x \in \Qbb \st \absp|x| \le 1\} = \left\{ \frac{a}{b} \in \Qbb \Bigg| p \nmid b \right\} = \Zbb_{(p)} .\] Thus it suffices to show $\Zbb$ is dense in $\Zbb_{(p)}$. Let $\frac{a}{b} \in \Zbb_{(p)}$, $a, b \in \Zbb$, $p \nmid b$. For $n \in \Nbb$, choose $y_n \in \Zbb$ such that $by_n \equiv a \pmod{p^n}$. THen $y_n \to \frac{a}{b}$ as $n \to \infty$. In particular, $\Zp$ is complete and $\Zbb \subseteq \Zp$ is dense. \end{proof} \begin{definition*}[Inverse limit] \glssymboldefn{invlim}% \glsnoundefn{invlim}{inverse limit}{inverse limits}% Let $(A_n)_{n = 1}^\infty$ be a sequence of sets / groups / rings together with homomorphisms $\varphi_n : A_{n + 1} \to A_n$ (transition maps). Then the \emph{inverse limit} of $(A_n)_{n = 1}^\infty$ is the set / group / ring defined by \[ \lim_{\stackrel[n]{}{\longleftarrow}} A_n = \left\{(a_n)_{n = 1}^\infty \in \prod_{n = 1}^{\infty} A_n \Bigg| \varphi(a_{n + 1}) = a_n ~\forall n\right\} .\] Define the group / ring operation componentwise. \end{definition*} \begin{notation*} \glssymboldefn{limproj}% Let $\theta_m : \invlim{n} A_n \to A_m$ denote the natural projection. \end{notation*} The \gls{invlim} satisfies the following universal property: \begin{fcprop}[Universal property of inverse limits] \label{univ_invlim} % Proposition 3.3 Assuming: - $B$ is a set / group / ring - $\psi_n$ are homomorphisms $\psi_n : B \to A_n$ such that \begin{picmath} \begin{tikzcd} B \ar[r, "\psi_{n + 1}"] \ar[rd, "\psi_n"] & A_{n + 1} \ar[d, "\varphi_n"] \\ & A_n \end{tikzcd} \end{picmath} commutes for all $n$ Then: there exists a unique homomorphism $\psi : B \to \invlim n A_n$ such that $\limproj_n \circ \psi = \psi_n$. \end{fcprop} \begin{proof} Define \begin{align*} \psi : B &\to \prod_{n = 1}^{\infty} A_n \\ b &\mapsto \prod_{n = 1}^{\infty} \psi_n(b) \end{align*} Then $\psi_n = \varphi_n \circ \psi_{n + 1}$ implies that $\psi(b) \in \invlim n A_n$. The map is clearly unique (determined by $\psi_n = \theta_n \circ \psi$) and is a homomorphism of sets / groups / rings. \end{proof} \begin{fcdefn}[$I$-adic completion] \glsnoundefn{Iadicc}{$I$-adic completion}{$I$-adic completions}% \glssymboldefn{Iadicc}% % Definition 3.4 Let $I \subseteq R$ be an ideal ($R$ a ring). The $I$-adic completion of $R$ is the \[ \hat{R} \defeq \invlim R / I^n \] where $R / I^{n + 1} \to R / I^n$ is the natural projection. \end{fcdefn} \glsadjdefn{adiclyc}{adically complete}{ring}% Note that there exists a natural map $i : R \to \iadicc{R}$ by the \nameref{univ_invlim} (there exist maps $R \to R / I^n$). We say $R$ is \emph{$I$-adically complete} if it is an isomorphism. \textbf{Fact:} $\ker(i : R \to \iadicc R) = \bigcap_{n = 1}^\infty I^n$. Let $(K, \absval|\bullet|)$ be a \gls{nonarch} \gls{valf}and $\pi \in \O_K$ such that $|\pi| < 1$. \begin{fcprop}[] \label{prop_3_5} % Proposition 3.5 Assuming: - $K$ is complete with respect to $|\bullet|$ Then: \begin{enumerate}[(i)] \item Then $\O_K \cong \invlim n \O_K / \pi^n \O_K$ ($\O_K$ is $\pi$-\gls{adiclyc}) \item Every $x \in \O_K$ can be written uniquely as $x = \sum_{i = 0}^{n} a_i \pi^i$, $a_i \in A$, where $A \subseteq \O_K$ is a set of coset representatives for $\O_K / \pi \O_K$. \end{enumerate} \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item $K$ is complete and $\O_K$ is closed, so $\O_K$ is complete. $x \in \bigcap_{n = 1}^\infty \pi^n \O_K$ impies $v(x) \ge nv(\pi)$ for all $n$, and hence $x = 0$. Hence $\O_K \to \invlim \O_K / \pi^n \O_K$ is injective. Let $(x_n)_{n = 1}^\infty \in \invlim \O_K / \pi^n \O_K$ and for each $n$, let $y_n \in \O_K$ be a lifting of $x_n \in \O_K / \pi^n \O_K$. Then $y_n - y_{n + 1} \in \pi^n \O_K$ so that $v(y_n - y_{n + 1}) \ge nv(\pi)$. Thus $(y_n)_{n = 1}^\infty$ is a Cauchy sequence in $\O_K$. Let $y_n \to y \in \O_K$. Then $y$ maps to $(x_n)_{n = 1}^\infty$ in the $\invlim n \O_K / \pi^n \O_K$. Thus $\O_K \to \invlim n \O_K / \pi^n \O_K$ is surjective. \item Exercise on Example Sheet 1. \qedhere \end{enumerate} \end{proof} \begin{corollary} % Corollary 3.6 \phantom{} \begin{enumerate}[(i)] \item $\Zp \cong \invlim \Zbb / p^n \Zbb$. \item Every element $x \in \Qp$ can be written uniquely as \[ x = \sum_{i = n}^{\infty} a_i p^i ,\] with $n \in \Zbb$, $a_i \in \{0, 1, \ldots, - 1\}$. \end{enumerate} \end{corollary}