%! TEX root = LF.tex % vim: tw=50 % 19/11/2024 12PM \begin{proof} By \cref{prop_13_10}, \cref{thm_14_2} and \cref{thm_13_4}, for $s \in \Zbb_{\ge -1}$, \[ G_s / G_{s + 1} \cong \text{a subgroup} \begin{cases} \Gal(k_L / k) & \text{if $s = -1$} \\ (k_L^\times, \times) & \text{if $s = 0$} \\ (k_L, +) & \text{if $s \ge 1$} \end{cases} \] Thus $G_s / G_{s + 1}$ is solvable for $s \ge -1$. Conclude using \cref{thm_14_2}(ii). \end{proof} Let $\char k = p$. Then $p \nmid |G_0 / G_1|$ and $|G_1| = p^n$. Thus $G_1$ is the unique (since normal) Sylow $p$-subgroup of $G_0 = \I_{L / K}$. \begin{fcdefn}[] \glsnoundefn{wig}{wild inertial group}{wild inertial groups}% \glsnoundefn{tquot}{tame quotient}{tame quotients}% \label{defn_14_4} % Definition 14.4 $G_1$ is called the wild inertial group, and $G_0 / G_1$ is called the tame quotient. \end{fcdefn} \glsadjdefn{tram}{tamely ramified}{extension}% \glsadjdefn{wram}{wildly ramified}{extension}% Suppose $L / K$ is finite separable. Say $L / K$ is tamely ramified if $\char k \nmid e_{L / K}$. Otherwise it is wildly ramified. \begin{fcthm}[] \label{thm_14_5} % Theorem 14.5 Assuming: - $[K : \Qp] < \infty$ - $L / K$ finite - $\diff LK = (\pi^{\delta(L / K)})$ Then: $\delta(L / K) \ge e_{L / K} - 1$, with equality if and only if \gls{tram}. In particular, $L / K$ \gls{unramext} if and only if $\diff LK = \O_L$. \end{fcthm} \begin{proof} Example Sheet 3 shows $\diff LK = \diff L{K_0} \cdot \diff{K_0}K$. Suffices to check $2$ cases: \begin{enumerate}[(i)] \item $L / K$ \gls{unramext}. Then \cref{prop_6_12} gives that $\O_L = \O_K[\alpha]$, for some $\alpha \in \O_L$ with $k_L = k(\ol{a})$. Let $g(X) \in O_K[X]$ be the minimal polynomial of $\alpha$. Since $[L : K] = [k_L : k]$, we have that $\ol{g}(X) \in k[X]$ is the minimal polynomial of $\ol{a}$. $\ol{g}(X)$ separable and hence $g'(\alpha) \not\equiv 0 \pmod \pi_L$. \cref{thm_12_8} implies $\diff LK = (g(\alpha)) = \O_L$. \item $L / K$ \gls{totramext}. Say $[L : K] = e$, $\O_L = \O_K[\pi_L]$, $\pi_L$ a root of \[ g(X) = X^e + \sum_{i = 0}^{e - 1} a_i X^i \in \O_K[X] \] is \gls{eispoly}. Then \[ g'(\pi_L) = \ub{e\pi_L^{e - 1}}_{\ge e - 1} + \ub{\sum_{i = 1}^{e - 1} i a_i \pi_L^{i - 1}}_{v_L \ge e} .\] Thus $v_L(y'(\pi_L)) \ge e - 1$. Equality if and only if $p \nmid e$. \qedhere \end{enumerate} \end{proof} \begin{corollary} \label{coro_14_6} % Corollary 14.6 Suppose $L / K$ is an extension of number fields. Let $P \subseteq \O_L$, $P \cap \O_K = \pideal$. Then $e(P / \pideal) > 1$ if and only if $P \mid \diff LK$. \end{corollary} \begin{proof} \cref{thm_12_9} implies $\diff LK = \prod_P \diff{L_P}{K_\pideal}$. Then use $e(P / \pideal) = e_{L_P / K_\pideal}$ and \cref{thm_14_5}. \end{proof} \begin{example*} \begin{itemize} \item $K = \Qp$, $\zeta_{p^n}$ a primitive $p^n$-th root of unity. $L = \Qp(\zeta_{p^n})$. The $p^n$-th cyclotomic polynomial is \[ \Phi_{p^n}(X) = X^{p^{n - 1}(p - 1)} + X^{p^{n - 1}(p - 2)} + \cdots + 1 \in \Zp[X] .\] See Example Sheet 3. \item $\Phi_{p^n}(X)$ irreducible (hence $\Phi_{p^n}(X)$ is the minimal polynomial of $\zeta_{p^n}$). \item $L / \Qp$ is Galois, \gls{totramext} of degree $p^{n + 1}(p - 1)$. \item $\pi \defeq \zeta_{p^n} - 1$ a \gls{unif} in $\O_L$ $\leadsto$ $\O_L = \Zp[\zeta_{p^n} - 1] = \Zp[\zeta_{p^n}]$. \item $\Gal(L / \Qp) \stackrel{\sim}{\to} (\Zbb / p^n \Zbb)^\times$ (abelian). $\sigma_m \leftrightarrow m$ where $\sigma_m(\zeta_{p^n}) = \zeta_{p^n}^m$. \[ v_L(\sigma_m(\pi) - \pi) = v_L(\zeta_{p^n}^m - \zeta_{p^n}) = v_L(\zeta_{p^n}^{m - 1} - 1) .\] Let $k$ be maximal such that $p^k \mid m - 1$. Then $\zeta_{p^n}^{m - 1}$ is a primitive $p^{n - k}$-th root of unity, and hence $\zeta_{p^n}^{m - 1} - 1$ is a \gls{unif} $\pi'$ in $L' = \Qp(\zeta_{p^n}^{m - 1})$. Hence \[ v_L(\zeta_{p^n}^{m - 1} - 1) = e_{L / L'} = \frac{e_{L / \Qp}}{e_{L' / \Qp}} = \frac{[L : \Qp]}{[L' : \Qp]} = \frac{p^{n - 1}(p - 1)}{p^{n - k - 1}(p - 1)} = p^k .\] \cref{thm_14_2}(i) implies that $\sigma_m \in G_i$ if and only if $p^k \ge i + 1$. Thus \[ G_i \cong \begin{cases} (\Zbb / p^n\Zbb)^\times & i \le 0 \\ (1 + p^k \Zbb) / p^n \Zbb & p^{k - 1} - 1 < i \le p^k - 1 (1 \le k \le i + 1) \\ \{1\} & p^{n - 1} - 1 < i \end{cases} .\] \end{itemize} \end{example*} \newpage \part{Local Class Field Theory} \newpage \section{Infinite Galois Theory} \begin{fcdefn}[Infinite Galois definitions] \label{defn_16_1} % Definition 16.1 \begin{itemize} \item $L / K$ is separable if $\forall \alpha \in L$, the minimal polynomial $f_\alpha(X) \in K[X]$ for $\alpha$ is separable. \item $L / K$ is normal if $f_\alpha(X)$ splits in $L$ for all $\alpha \in L$. \item $L / K$ is Galois if it is separable and normal. Write $\Gal(L / K) \defeq \Aut_K(L)$ in this case. If $L / K$ is a finite Galois extension, then we have a Galois correspondence: \begin{align*} \{\text{subextensions $K \subseteq K' \subseteq L$}\} &\leftrightarrow \{\text{subgroups of $\Gal(L / K)$}\} \\ K' &\mapsto \Gal(K / K') \end{align*} \end{itemize} \end{fcdefn} Let $(I, \le)$ be a poset. Say $I$ is a directed set if for all $i, j \in I$, there exists $k \in I$ such that $i \le k$, $j \le k$. \begin{example*} \phantom{} \begin{itemize} \item Any total order (for example $(\Nbb, \le)$). \item $\Nbb_{\ge 1}$ ordered by divisibility. \end{itemize} \end{example*} \begin{fcdefn} \label{defn_16_2} % Definition 16.2 Let $(I, \le)$ be a directed set and $(G_i)_{i \in I}$ a collection of groups together with maps $\varphi_{ij} : G_j \to G_i$, $i \le j$ such that: \begin{itemize} \item $\varphi_{ik} = \varphi_{ij} \circ \varphi_{jk}$ for any $i \le j \le k$ \item $\varphi_{ii} = \id$ \end{itemize} Say $((G_i)_{i = 1}, \varphi_{ij})$ is an inverse system. The inverse limit of $(G_i, \varphi_i)$ is \[ \displaystyle \lim_{\stackrel[i]{}{\longleftarrow}} G_i = \{(g_i)_{i \in I} \in \prod_{i \in I} G_i \mid \varphi_{ij}(g_j) = g_i\} .\] \end{fcdefn} \begin{remark*} \phantom{} \begin{itemize} \item $(\Nbb, \le)$ recovers the previous set. \item There exist projection maps $\varphi_j : \dinvlim{i \in I} G_i \to G_j$. \item $\dinvlim{i \in I} G_i$ satisfies a universal property. \item Assume $G_i$ finite. Then the profinite topology on $\dinvlim{i \in I} G_i$ is the weakest topology such that $\varphi_j$ are continuous for all $j \in I$. \end{itemize} \end{remark*} \begin{fcprop}[] \label{prop_16_3} % Proposition 16.3 Assuming: - $L / K$ Galois Then: \begin{enumerate}[(i)] \item The set $I = \{F / K \text{finite} \st F \subseteq L, \text{ $F$ Galois}\}$ is a directed set under $\subseteq$. \item For $F, F' \in I$, $F \subseteq F'$ there is a restriction map $\res_{F, F'} : \Gal(F' / K) \surjto \Gal(F / K)$ and the natural map \[ \Gal(L / K) \to \dinvlim{F \in I} \Gal(F / K) \] is an isomorphism. \end{enumerate} \end{fcprop} \begin{proof} Example Sheet 4. \end{proof}