%! TEX root = LF.tex % vim: tw=50 % 16/11/2024 12PM Since $v_K \left( \frac{x^n}{n!} \right) \ge r$ for all $n \ge 1$, $\exp(x) \in 1 + \pi^r \O_K$. Consider $\log$: $1 + \pi^r \O_K \to \pi^r \O_K$. \[ \log(1 + x) = \sum_{n = 1}^{\infty} \frac{(-1)^{n - 1}}{n} x^n \] which converges as before. Recall identities in $\Qbb[[X, Y]]$: \begin{align*} \exp(X + Y) &= \exp(X) \exp(Y) \\ \exp(\log(1 + X)) &= 1 + X \\ \log(\exp(X)) &= X \end{align*} Thus $\exp ; (\pi^r \O_K, +) \stackrel{\sim}{\to} (1 + \pi^r \O_K, \times)$ is an isomorphism. \end{proof} $K$ \emph{any} local field: $U_K \defeq \O_K^\times$, $\pi \in \O_K$ \gls{unif}. \begin{fcdefn}[$s$-th unit group] \label{defn_13_9} % Definition 13.9 For $s \in \Zbb$, the $s$-th unit group $U_K^{(s)}$ is defined by \[ U_K^{(s)} = (1 + \pi^s \O_K, \times) .\] Set $U_K^{(0)} = U_K$. Then we have \[ \cdots \subseteq U_K^{(s)} \subseteq U_K^{(s - 1)} \subseteq \cdots \subseteq U_K^{(0)} = U_K .\] \end{fcdefn} \begin{proposition} \label{prop_13_10} % Proposition 13.10 \phantom{} \begin{enumerate}[(i)] \item $U_K^{(0)} / U_K^{(i)} \cong (k^\times, \times)$ ($k \cong \O_K / \pi$) \item $U_K^{(s)} / U_K^{(s + 1)} \cong (k, +)$ for $s \ge 1$ \end{enumerate} \end{proposition} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Reduction modulo $\pi$. $\O_K^\times \to k^\times$ is surfective with kernel $1 + \pi\O_K = U_K^{(1)}$. \item $f ; U_K^{(s)} \to k$, $1 + \pi^s x \mapsto x \mod \pi$. \[ (1 + \pi^s x)(1 + \pi^s y) = 1 + \pi^s(x + y + \pi^s xy) .\] $x + y + \pi^s xy \equiv x + y \bmod \pi$, hence $f$ is a group homomorphism, surjective with kernel $U_K^{(s + 1)}$. \end{enumerate} \end{proof} \begin{remark*} Let $[K : \Qp] < \infty$. \cref{prop_13_8}, \cref{prop_13_9} implies that there exists finite index subgroup of $\O_K^\times$ isomorphism to $(\O_K, +)$. \end{remark*} \begin{example*} $\Zp$, $p > 2$, $e = 1$, take $r = 1$. Then \begin{align*} \Zp^\times &\stackrel{\sim}{\to} (\Zbb / p\Zbb)^\times \times (1 + p\Zp) \cong \Zbb / (p - 1)\Zbb \times \Zp \\ x &\mapsto \left( x \bmod p, \frac{x}{[x \bmod p]} \right) \end{align*} $p = 2$, take $r = 2$. \begin{align*} \Zbb_2^\times &\stackrel{\sim}{\to} (\Zbb / 4\Zbb)^\times \times (1 + p^2\Zp) \cong \Zbb / 2\Zbb \times \Zbb_2 \\ x &\mapsto \left( x \bmod 4, \frac{x}{\eps(x)} \right) \end{align*} where \[ \eps(x) = \begin{cases} +1 & x \equiv 1 \pmod 4 \\ -1 & x \equiv -1 \pmod 4 \end{cases} \] So: \[ \Zp^\times / (\Zp^\times)^2 \cong \begin{cases} \Zbb / 2\Zbb & \text{if $p > 2$} \\ (\Zbb / 2\Zbb)^2 & \text{if $p = 2$} \end{cases} \] \end{example*} \newpage \section{Higher Ramification Groups} Let $L / K$ be a finite Galois extension of \glspl{lf}, and $\pi_L \in \O_L$ a \gls{unif}. \begin{fcdefn}[$s$-th ramification group] \label{defn_14_1} % Definition 14.1 Let $v_L$ be a normalised valuation in $\O_L$. For $s \in \Rbb_{\ge -1}$, the $s$-th ramification group is \[ G_s(L / K) = \{\sigma \in \Gal(K) \st v_L(\sigma(x) - x) \ge s + 1 ~\forall x \in O_L\} .\] \end{fcdefn} \begin{remark*} $G_s$ only changes at integers. $G_s$, $s \in \Rbb_{\ge -1}$ used to define upper numbering. \end{remark*} \begin{example*} \begin{align*} G_{-1}(L / K) &= \Gal(L / K) \\ G_0(L / K) &= \{\sigma \in \Gal(L / K) \st \sigma(x) \equiv x \bmod \pi_L ~\forall x \in \O_L\} \\ &= \ker(\Gal(L / K) \surjto \Gal(k_L / k)) \\ &= \I_{L / K} \end{align*} \end{example*} \begin{note*} For $s \in \Zbb_{\ge 0}$, \[ G_s(L / K) = \ker(\Gal(L / K) \surjto \Aut(\O_L / \pi_L^{s + 1} \O_L)) \] hence $G_s(L / K)$ is normal in $G_{-1}$. \[ \cdots \subseteq G_s \subseteq G_{s - 1} \subseteq \cdots \subseteq G_{-1} = \Gal(L / K) .\] \end{note*} \begin{theorem} \label{thm_14_2} % Theorem 14.2 \phantom{} \begin{enumerate}[(i)] \item For $s \ge 1$, \[ G_s = \{\sigma \in G_0 \st v_L(\sigma(\pi_L) - \pi_L) \ge s + 1\} .\] \item $\bigcap_{n = 0}^\infty G_n = \{1\}$. \item Let $s \in \Zbb_{\ge 0}$. Then there exists an injective group homomorphism \[ G_s / G_{s + 1} \injto U_L^{(s)} / U_L^{(s + 1)} \] induced by $\sigma \mapsto \frac{\sigma(\pi_L)}{\pi_L}$. This map is independent of the choice of $\pi_L$. \end{enumerate} \end{theorem} \begin{proof} Let $K_0 \subseteq L$ be a maximal \gls{unramext} extension of $K$ in $L$. Upon replacing $K$ by $K_0$, we may assume that $L / K$ is \gls{totramext}. \begin{enumerate}[(i)] \item \cref{thm_13_8} implies $\O_L / \O_K[\pi_L]$. Suppose $v_L(\sigma(\pi_L) - \pi_L) \ge s + 1$. Let $x \in \O_L$, then $x = f(\pi_L)$, $f(X) \in \O_K[X]$. \begin{align*} \sigma(x) - x &= \sigma(f(\pi_L)) - f(\pi_L) \\ &= f(\sigma(\pi_L)) - f(\pi_L) \\ &= (\sigma(\pi_L) - \pi_L) g(\pi_L) \end{align*} for some $g(X) \in \O_K[X]$, using the fact that $X^n - Y^n = (X - Y)(X^{n - 1} + \cdots + Y^{n - 1})$. Thus \[ v_L(\sigma(x) - x) = v_L(\sigma(\pi_L) - \pi_L) + \ub{v_L(g(\pi_L))}_{\ge 0} \ge s + 1 .\] \item Suppose $\sigma \in \Gal(L / K)$, $\sigma \neq 1$. Then $\sigma(\pi_L) \neq \pi_L$, because $L = K(\pi_L)$ and hence $v_L(\sigma(\pi_L) - \pi_L) < \infty$. Thus $\sigma \notin G_s$ for some $s \gg 0$ by (i). \item Note: for $\sigma \in G_s$, $s \in \Zbb_{\ge 0}$, \[ \sigma(\pi_L) \in \pi_L + \pi_L^{s + 1} \O_L \] hence \[ \frac{\sigma(\pi_L)}{\pi_L} \in 1 + \pi_L^s \O_L = U_L^{(s)} .\] We claim \begin{align*} \varphi : G_s &\to U_L^{(s)} / U_L^{(s + 1)} \\ \sigma &\mapsto \frac{\sigma(\pi_L)}{\pi_L} \end{align*} is a group homomorphism with kernel $G_{s + 1}$. For $\sigma, \tau \in G_s$, let $\tau(\pi_L) = u\pi_L$, $u \in \O_L^\times$. Then \begin{align*} \frac{\sigma\tau(\pi_L)}{\pi_L} &= \frac{\sigma(\tau(\pi_L))}{\tau(\pi_L)} \frac{\tau(\pi_L)}{\pi_L} \\ &= \frac{\sigma(u)}{u} \frac{\sigma(\pi_L)}{\pi_L} \frac{\tau(\pi_L)}{\pi_L} \end{align*} But $\sigma(u) \in u + \pi_L^{s + 1} \O_L$ since $\sigma \in G_s$. Thus $\frac{\sigma(u)}{u} \in U_L^{(s + 1)}$ and hence \[ \frac{\sigma\tau(\pi_L)}{\pi_L} \equiv \frac{\sigma(\pi_L)}{\pi_L} \cdot \frac{\tau(\pi_L)}{\pi_L} \bmod U_L^{(s + 1)} .\] Hence $\varphi$ is a group homomorphism. Moreover, \[ \ker(\varphi) = \{\sigma \in G_s \st \sigma(\pi_L) \equiv \pi_L \bmod \pi_L^{s + 1}\} = G_{s + 1} .\] If $\pi_L' = a \pi_L$ is another \gls{unif}, $a \in \O_L^\times$. Then \[ \frac{\sigma(\pi_L')}{\pi_L'} = \frac{\sigma(a)}{a} \cdot \frac{\sigma(\pi_L)}{\pi_L} \equiv \frac{\sigma(\pi_L)}{\pi_L} \bmod U_L^{(s + 1)} . \qedhere \] \end{enumerate} \end{proof} \begin{corollary} \label{coro_14_3} % Corollary 14.3 $\Gal(L / K)$ is solvable. \end{corollary}