%! TEX root = LF.tex % vim: tw=50 % 12/11/2024 12PM \begin{remark*} $\diff LK \le \O_L$ since $\O_L \subseteq \invdiff LK$. \end{remark*} \glssymboldefn{ig}% Let $I_L$, $I_K$ be the groups of fractional ideals. \cref{thm_9_7} gives that \[ I_L \cong \bigotimes_{\substack{0 \neq P \\ \text{prime ideals in $\O_L$}}} \Zbb, \qquad I_K \cong \bigotimes_{\substack{0 \neq P \\ \text{prime ideals in $\O_K$}}} .\] \glssymboldefn{idN}% Define $N_{L / K} : I_L \to I_K$ induced by $P \mapsto \pideal^f$ for $\pideal = P \cap \O_K$ and $f = f(P / \pideal)$. \textbf{Fact:} \begin{picmath} \begin{tikzcd} L^\times \ar[r] \ar[d, "\idN_{L / K}"] & \ig_L \ar[d, "\idN_{L / K}"] \\ K^\times \ar[r] & \ig_K \end{tikzcd} \end{picmath} (Use \cref{coro_10_10} and $\ddv_\pideal(N_{L\completep P / K\completep\pideal}(x)) = f_{P / \pideal} \ddv_(x)$ for $x \in L\completep P^{\times}$ where $\ddv_\pideal$ and $\ddv_P$ are the normalised \glspl{valt} for $L\completep P$, $K\completep \pideal$). \begin{theorem} \label{thm_12_7} % Theorem 12.7 $\idN_{L / K}(\diff LK) = \discrim_{L / K}$. \end{theorem} \begin{proof} First assume $\O_K$, $\O_L$ are PIDs. Let $x_1, \ldots, x_n$ be an $\O_K$-basis for $\O_L$ and $y_1, \ldots, y_n$ be the dual basis with respect to trace form. Then $y_1, \ldots, y_n$ is a basis for $\invdiff LK$. Let $\sigma_1, \ldots, \sigma_n : L \to \ol{K}$ be the distinct embeddings. Have \[ \sum_{i = 1}^{n} \sigma_i(x_j) \sigma_i(y_k) = \Tr(x_j y_k) = \delta_{jk} .\] But \[ \Disc(x_1, \ldots, x_n) = \det(\sigma_i(x_j))^2 .\] Thus \[ \Disc(x_1, \ldots, x_n) \Disc(y_1, \ldots, y_n) = 1 .\] Write $\invdiff LK = \beta \O_L$ since $\beta \in L$. Then \begin{align*} \discrim_{L / K}^{-1} &= (\Disc(x_1, \ldots, x_n)^{-1}) \\ &= (\Disc(y_1, \ldots, y_n)) \\ &= (\Disc(\beta x_1, \ldots, \beta x_n)) &&\text{change of basis matrix is invertible in $\O_K$} \\ &= N_{L / K}(\beta^2) \Disc(x_1, \ldots, x_n) &&\text{change of basis matrix is $[\mult(\beta)]$} \end{align*} Thus \[ \discrim_{L / K}^{-1} = N_{L / K}(\invdiff LK)^2 \discrim_{L / K} \] so \[ N_{L / K}(\diff LK) = \discrim_{L / K} .\] In general, \gls{locise} at $S = \O_K \setminus \pideal$ and use $S^{-1} \diff LK = \diff{S\local \O_L}{S\local \O_K}$. Then $S\local \discrim_{L / K} = \discrim_{S\local \O_L / S\local \O_K}$. Details omitted. \end{proof} \begin{fcthm}[] \label{thm_12_8} % Theorem 12.8 Assuming: - $\O_L = \O_K[\alpha]$ - $\alpha$ has monic minimal polynomial $g(X) \in \O_K[X]$ Then: $\diff LK = (g'(\alpha))$. \end{fcthm} \begin{proof} Let $\alpha = \alpha_1, \ldots, \alpha_n$ be the roots of $g$. Write \[ \frac{g(X)}{X - \alpha} = \beta_{n - 1} X^{n - 1} + \cdots + \beta_1 X + \beta_0 \] with $\beta_i \in \O_L$ and $\beta_{n - 1} = 1$. We claim \[ \sum_{i = 1}^{n} \frac{g(X)}{X - \alpha_i} \frac{\alpha_i^n}{g'(\alpha_i)} = X^r \] for $0 \le r \le n - 1$. Indeed the difference is a palynomial of degree $< n$, which vanishes for $X = \alpha_1, \ldots, \alpha_n$. Equate coefficients of $X^s$, which gives \[ \Tr_{L / K} \left( \frac{\alpha^r \beta_s}{g'(\alpha)} \right) = \delta_{rs} .\] Since $1, \alpha, \ldots, \alpha^{n - 1}$ is an $\O_K$ basis for $\O_L$, $\invdiff LK$ has an $\O_K$ basis \[ \frac{\beta_0}{g'(\alpha)}, \frac{\beta_1}{g'(\alpha)}, \ldots, \ub{\frac{\beta_{n - 1}}{g'(\alpha)}}_ {\frac{1}{g'(\alpha)}} .\] Note all of these are $\O_L$ multiples of the last term, since the $\beta_i$ are in $\O_L$. So $\invdiff LK = \frac{1}{(g'(\alpha))}$, hence $\diff LK = (g'(\alpha))$. \end{proof} $P$ a prime ideal of $\O_L$, $\pideal = \O_K \cap P$. $\diff{L\completep P}{K \completep\pideal}$ using $\O_{K\completep \pideal}$, $\O_{L\completep P}$. We identify $\diff{L\completep P}{K \completep\pideal}$ with a power $\mathcal{P}$. \begin{theorem} \label{thm_12_9} % Theorem 12.9 $\diff LK = \prod_{\mathcal{P}} \diff{L\completep P}{K\completep\pideal}$ (finite product, see later). \end{theorem} \begin{proof} Let $x \in L$, $\pideal \subseteq \O_K$. Then \[ \Tr{L / K}(x) = \sum_{\mathcal{P} \mover \pideal} \Tr_{L\completep P / K\completep\pideal} (x) \tag{$*$} \label{lec15_eq} \] (of \cref{coro_10_10}). Let $r(\mathcal{P}) = \ddv_{\mathcal{P}}(\diff LK)$, $s(\mathcal{P}) = \ddv_{\mathcal{P}}(\diff {L\completep P}{K\completep\pideal})$. \begin{enumerate}[$\subseteq$] \item[$\subseteq$] (i.e. $r(\mathcal{P}) \ge s(\mathcal{P})$). Let $x \in L$ with $\ddv_{\mathcal{P}}(x) \ge -s(\mathcal{P})$ for all $\mathcal{P}$. Then $\Tr_{L\completep P / K\completep\pideal}(xy) \in \O_{K\completep\pideal}$, for all $y \in L$ and for all $\mathcal{P}$. Using \eqref{lec15_eq} we get \[ \Tr_{L / K}(xy) \in \O_{K\completep\pideal} \qquad \forall y \in \O_L, \forall \mathcal{P} .\] Thus \[ \Tr_{L / K}(xy) \in \O_K \qquad \forall y \in \O_L \] so $\diff LK \subseteq \prod_{\mathcal{P}} \diff{L\completep {\mathcal{P}}}{K\completep \pideal}$. \item[$\supseteq$] (i.e. $r(\mathcal{P}) \le s(\mathcal{P})$). Fix $\mathcal{P}$ and let $x \in P^{-r(P)} \setminus P^{-r(P)+1}$. Then $\ddv_P(x) = -r(P)$, $\ddv_{P'}(x) \ge 0$ for all $P' \neq P$. By \eqref{lec15_eq}, we have \[ \Tr_{L\completep P / K\completep\pideal}(xy) = \Tr_{L / K}(xy) - \sum_{\substack{P' \mover \pideal \\ P' \neq P}} \Tr_{L\completep P / K\completep \pideal}(xy) \qquad \forall y \in \O_L \] hence \[ \Tr_{L\completep P / K\completep \pideal}(xy) \in \O_{K\completep\pideal} \qquad \forall y \in \O_{L \completep P} .\] Hence $x \in \invdiff{L\completep P}{K\completep\pideal}$, i.e. $-\ddv_P(x) = r(P) \le s(P)$. So $\diff LK \supseteq \prod_P \diff{L\completep P}{K\completep \pideal}$. \qedhere \end{enumerate} \end{proof} \begin{corollary} \label{coro_12_10} % Corollary 12.10 $\discrim_{L / K} = \prod_{P \mover \pideal} \discrim_{L\completep P / K\completep\pideal}$. \end{corollary} \begin{proof} Apply $\idN_{L / K}$ to $\diff LK = \prod_{P \mover \pideal} \diff{L\completep P}{K\completep\pideal}$. \end{proof} \newpage \section{Unramified and totally ramified extensions of local fields} Let $L / K$ be a finite separable extension of \gls{nonarch} \glspl{lf}. \cref{coro_11_6} implies \[ [L : K] = e_{L / K} f_{L / K} \label{lec15_eq2} \tag{$*$} .\] \begin{fclemma} \label{lemma_13_1} % Lemma 13.1 Assuming: - $M / L / K$ finite separable extensions of \glspl{lf} Then: \begin{enumerate}[(i)] \item $f_{M / K} = f_{L / K} f_{M / L}$ \item $e_{M / K} = e_{L / K} f_{M / L}$ \end{enumerate} \end{fclemma} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item $f_{M / K} = [k_M : k] = [k_M : k_L][k_L : k] = f_{M / L} f_{L / K}$. \item (i) and \eqref{lec15_eq2}. \qedhere \end{enumerate} \end{proof} \begin{fcdefn}[Unramified / ramified / totally ramified] \glsadjdefn{unramext}{unramified}{extension}% \glsadjdefn{ramext}{ramified}{extension}% \glsadjdefn{totramext}{totally ramified}{extension}% \label{defn_13_2} % Definition 13.2 The extension $L / K$ is said to be: \begin{itemize} \item \emph{unramified} if $e_{L / K} = 1$ (equivalently $f_{L / K} = [L : K]$). \item \emph{ramified} if $e_{L / K} > 1$ (equivalently $f_{L / K} < [L : K]$). \item \emph{totally ramified} if $e_{L / K} = [L : K]$ (equivalently $f_{L / K} = 1$). \end{itemize} \end{fcdefn}