%! TEX root = LF.tex % vim: tw=50 % 09/11/2024 12PM \begin{fcprop}[] \label{prop_11_8} % Proposition 11.8 Assuming: - $\O_K$ a \gls{dedd} - $L / K$ a finite Galois extension - $0 \neq P \subseteq \O_L$ a prime ideal - $P \mover \pideal \subseteq \O_K$ Then: \begin{enumerate}[(i)] \item $L\completep P / K\completep \pideal$ is Galois. \item There is a natural map \[ \res : \Gal(L\completep P / K\completep\pideal) \to \Gal(L / K) \] which is injective and has image $\GP$. \end{enumerate} \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item $L / K$ Galois implies that $L$ is a splitting field of a separable polynomial $f(X) \in K[X]$. Hence $L\completep P$ is the splitting field of $f(X) \in K\completep [X]$, hence $L\completep P / K\completep\pideal$ is Galois. \item Let $\sigma \in \Gal(L\completep P / K\completep\pideal)$, then $\sigma(L) = L$ since $L / K$ is normal, hence we have a map $\res : \Gal(L\completep P / K\completep \pideal) \to \Gal(L / K)$, $\sigma \mapsto \sigma|_L$. Since $L$ is dense in $L\completep P$, $\res$ is injective. By \cref{lemma_8_2}, we have \[ |\sigma(x)|_P = |x|_P \] for all $\sigma \in \Gal(L\completep P / K\completep \pideal)$ and $x \in L\completep P$. Hence $\sigma(P) = P$ for all $\sigma \in \Gal(L\completep P / K\completep\pideal)$ and hence $\res(\sigma) \in \GP$ for all $\sigma \in \Gal(L\completep P / K\completep \pideal)$. To show surjectivity, it suffices to show that \[ |\GP| = ef = [L\completep P : K\completep\pideal] .\] Write $\pideal\O_L = P_1^{e_1} \cdots P_r^{e_r}$, $f = [\O_L / P : \O_K / \pideal]$. Then \begin{itemize} \item $|\GP| = \frac{|\Gal(L / K)|}{r} = \frac{efr}{r} = ef$ (using \cref{coro_11_5}). \item $[L\completep P : K\completep\pideal] = ef$. Apply \cref{coro_11_6} to $L\completep P / K\completep \pideal$, noting that $e, f$ don't change when we take completions. \qedhere \end{itemize} \end{enumerate} \end{proof} \newpage \part{Ramification Theory} $p = \pideal_1 \pideal_2$ in $\Zbb[i]$ if and only if $p = x^2 + y^2$. We will consider $L / K$ extension of algebraic number fields with $[L : K] = n$. \newpage \section{Different and discriminant} \begin{notation*} \glssymboldefn{Disc}% Let $x_1, \ldots, x_n \in L$. Set \begin{align*} \Delta(x_1, \ldots, x_n) &= \det(\Tr_{L / K}(x_i x_j)) \in K \\ &= \det \left( \sum_{k = 1}^{n} \sigma_k(x_i) \sigma_k(x_j)\right) \\ &= \det(BB^\top) \end{align*} where $\sigma_k : L \to \ol{K}$ are distinct embeddings and $B = (\sigma_i(x_j))$. \end{notation*} \textbf{Note:} \begin{itemize} \item If $y_i = \sum_{j = 1}^{n} a_{ij} x_j$, $a_{ij} \in K$, then \[ \Disc(y_1, \ldots, y_n) = \det(A)^2 \Disc(x_1, \ldots, x_n) \] where $A = (a_{ij})$. \item If $x_1, \ldots, x_n \in \O_L$, then $\Disc(x_1, \ldots, x_n) \in \O_K$. \end{itemize} \begin{fclemma}[] \label{lemma_12_1} % Lemma 12.1 Assuming: - $k$ a \gls{perf} field - $R$ a $k$-algebra which is finite dimensional as a $k$-vector space Then: the Trace form \begin{align*} (\bullet, \bullet) : R \times R &\to R \\ (x, y) &\mapsto \Tr_{R / k}(xy) (\defeq \Tr_k(\mult(xy))) \end{align*} is non-degenerate if and only if $R = k_1 \times \cdots \times k_r$ where $k_i / k$ is a finite separable extension of $k$. \end{fclemma} \begin{proof} Example Sheet 3. \end{proof} \begin{fcthm}[] \label{thm_12_2} % Theorem 12.2 Assuming: - $0 \neq \pideal \subseteq \O_K$ prime ideal Then: \begin{enumerate}[(i)] \item If $\pideal$ \gls{rames} in $L$, then for every $x_1, \ldots, x_n \in \O_L$, we have $\Disc(x_1, \ldots, x_n) \equiv 0 \bmod \pideal$. \item If $\pideal$ is un\gls{ramed} in $L$, then there exists $x_1, \ldots, x_n$ such that $\pideal \nmid (\Disc(x_1, \ldots, x_n))$. \end{enumerate} \end{fcthm} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Let $\pideal \O_L = P_1^{e_1} \cdots P_r^{e_r}$, $0 \neq P_i \subseteq \O_L$ distinct prime ideals, $e_i > 0$. Define \[ R \defeq \O_L / \pideal \O_L \stackrel{\text{\hyperref[lemma_10_8]{CRT}}}{=} \prod_{i = 1}^{r} \O_L / P_i^{e_i} .\] If $\pideal$ \gls{rames}, then $\O_L / \pideal \O_L$ has nilpotents. Hence \[ \Disc(\ol{x}_1, \ldots, \ol{x}_n) = 0 \qquad \forall \ol{x}_i \in \O_L / \pideal \O_L .\] Then using the fact that \begin{picmath} \begin{tikzcd} \O_L \ar[r] \ar[d, "\Tr_{L / K}"] & R = \O_L / \pideal \O_L \ar[d, "\Tr_{R / k}"] \\ \O_K \ar[r] & k = \O_K / \pideal \end{tikzcd} \end{picmath} commutes, we get that \[ \Disc(x_1, \ldots, x_n) \equiv 0 \bmod \pideal \qquad \forall x_i \in \O_L / \pideal \O_L .\] \item $\pideal$ un\gls{ramed} implies $R = \O_L / \pideal \O_L$ is a product of finite extensions of $k$. By \cref{lemma_12_1}, we get that the Trace form is non-degenerate, hence for $\ol{x}_1, \ldots, \ol{x}_n$ a basis of $\O_L / \pideal \O_L$ as a $k$ vector space, we have $\Disc(\ol{x}_1, \ldots, \ol{x}_n) \neq 0$. So thee exist $x_1, \ldots, x_n \in \O_L$ such that \[ \Disc(x_1, \ldots, x_n) \not\equiv 0 \bmod \pideal . \qedhere \] \end{enumerate} \end{proof} \begin{fcdefn}[Discriminant] \glssymboldefn{discrim}% \label{defn_12_3} % Definition 12.3 The \emph{discriminant} is the ideal $d_{L / K} \subseteq \O_K$ generated by $\Disc(x_1, \ldots, x_n)$ for all choices of $x_1, \ldots, x_n \in \O_L$. \end{fcdefn} \begin{corollary} \label{coro_12_4} % Corollary 12.4 $\pideal$ \gls{rames} $L$ if and only if $\pideal \mover d_{L / K}$. In particular, only finitely many primes \glsref[rames]{ramify} in $L$. \end{corollary} \begin{fcdefn}[Inverse different] \glssymboldefn{invdiff}% \label{defn_12_5} % Definition 12.5 The \emph{inverse different} is \[ D_{L / K}^{-1} = \{y \in L : \Tr_{L / K}(xy) \in \O_K ~\forall x \in \O_L\} ,\] an $\O_L$ submodule of $L$. \end{fcdefn} \begin{lemma} \label{lemma_12_6} % Lemma 12.6 $\invdiff LK$ is a fractional ideal in $L$. \end{lemma} \begin{proof} Let $x_1, \ldots, x_n \in \O_L$ a $K$-basis for $L / K$. Set \[ d \defeq \Disc(x_1, \ldots, x_n) = \det(\Tr_{L / K}(x_i x_j)) ,\] which is non-zero since separable. For $x \in \invdiff LK$ write $x = \sum_{j = 1}^{r} \lambda_j x_j$ with $\lambda_j \in K$. We show $\lambda_j \in \frac{1}{d} \O_K$. We have \[ \Tr_{L / K}(x x_i) = \sum_{j = 1}^{n} \lambda_j \Tr_{L / K}(x_i x_j) \in \O_K .\] Set $A_{ij} = \Tr_{L / K}(x_i x_j)$. Multiplying by $\Adj(A) \in M_n(\O_K)$, we get \[ d \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \Adj(A) \begin{pmatrix} \Tr_{L / K}(x x_1) \\ \vdots \\ \Tr_{L / K}(x x_n) \end{pmatrix} \] Since $\lambda_i \in \frac{1}{d} \O_K$, we have $x \in \frac{1}{d} \O_L$. Thus $\invdiff LK \le \frac{1}{d\O_K}$, so $\invdiff LK$ is a fractional ideal. \end{proof} \glssymboldefn{diff}% The inverse $D_{L / K}$ of $\invdiff LK$ is the different ideal.