%! TEX root = LF.tex % vim: tw=50 % 07/11/2024 12PM \begin{example*} $K = \Qbb$, $L = \Qbb(i)$, $f(X) = X^2 + 1$. \nameref{hensel} gives us that $\sqrt{-1} \in \Qbb_5$. Hence $(5)$ splies in $\Qbb(i)$, i.e. $5\O_L = \pideal_1\pideal_2$. \end{example*} \begin{corollary} \label{coro_10_10} % Corollary 10.10 Let $0 \neq \pideal \subseteq \O_K$ a prime ideal. For $x \in L$ we have \[ N_{L / K}(x) = \prod_{P \mover \pideal} N_{L\completep P / L\completep\pideal}(x) .\] \end{corollary} \begin{proof} Let $B_1, \ldots, B_r$ be bases for $L\completep{P_1}, \ldots, L\completep{P_r}$ as $K\completep\pideal$-vector spaces. Then $B = \bigcup_i B_i$ is a basis for $L \otimes_K K\completep\pideal$ over $K\completep\pideal$. Let $[\mult(x)]_B$ (respectively $[\mult(x)]_{B_i}$) denote the matrix for $\mult(x) : L\otimes_K K\completep\pideal \to L\otimes_K K\completep\pideal$ (respectively $L\completep{P_i} \to L\completep{P_i}$) with respect to the basis $B$ (respectively $B_i$). Then \[ [\mult(x)]_B = \begin{pmatrix} [\mult(x)]_{B_1} & & \\ & \ddots & \\ & & [\mult(x)]_{B_r} \end{pmatrix} \] hence \begin{align*} N_{L / K}(x) &= \det([\mult(x)]_B) \\ &= \prod_{i = 1}^{r} \det [\mult(x)]_{B_i} \\ &= \prod_{i = 1}^{r} N_{L\completep{P_i} / K\completep\pideal}(x) \qedhere \end{align*} \end{proof} \newpage \section{Decomposition groups} \begin{fcdefn}[Ramification] \glsadjdefn{rames}{ramifies}{prime ideal}% \glsnoundefn{ramind}{ramification index}{ramification indexes}% \glsadjdefn{ramed}{ramified}{prime ideal}% \label{defn_11_1} % Definition 11.1 Let $0 \neq \pideal$ be a prime ideal of $\O_K$, and \[ \pideal \O_L = P_1^{e_1} \cdots P_r^{e_r} \] with $P_i$ distinct prime ideals in $\O_L$, and $e_i > 0$. \begin{enumerate}[(i)] \item $e_i$ is the \emph{ramification index} of $P_i$ over $\pideal$. \item We say $\pideal$ \emph{ramifies} in $L$ if some $e_i > 1$. \end{enumerate} \end{fcdefn} \begin{example*} $\O_K = \Cbb[t]$, $\O_L = \Cbb[T]$. $\O_K \to \O_L$ sends $t \mapsto T^n$. Then $t\O_L = T^n \O_L$, so the \gls{ramind} of $(T)$ over $(t)$ is $n$. Corresponds geometrically to the degree $n$ of covering of Riemann surfaces $\Cbb \to \Cbb$, $x \mapsto x^n$. \end{example*} \begin{fcdefn}[Residue class degree] \label{defn_11_2} % Definition 11.2 $f_i \defeq [\O_L / P_i : \O_K / \pideal]$ is the \emph{residue class degree} of $P_i$ over $\pideal$. \end{fcdefn} \begin{theorem} \label{thm_13_3} % Theorem 13.3 $\sum_{i = 1}^{r} e_i f_i = [L : K]$. \end{theorem} \begin{proof} Let $S = \O_K \setminus (\pideal)$. Exercise (properties of \gls{locon}): \begin{enumerate}[(1)] \item $S\local \O_L$ is the \gls{intc} of $S\local \O_K$ in $L$. \item $S\local\completep\pideal S\local \O_L \cong S\local P_1^{e_1} \cdots S\local P_r^{e_r}$. \item $S\local \O_L / S\local P_i \cong \O_L / P_i$ and $S\local \O_K / S\local \pideal \cong \O_K / \pideal$. \end{enumerate} In particular, (2) and (3) imply $e_i$ and $f_i$ don't change when we replace $\O_K$ and $\O_L$ by $S\local \O_K$ and $S\local \O_L$. Thus we may assume that $\O_K$ is a \gls{dvr} (hence a PID). By \nameref{lemma_10_8}, we have \[ \O_L / \pideal \O_L \cong \prod_{i = 1}^{r} \O_L / P_i^{e_i} .\] We count dimension as $k \defeq \O_K / \pideal$ vector spaces. RHS: for each $i$, there exists a decreasing sequence of $k$-suibspaces \[ 0 \subseteq P_i^{e_i - 1} / P_i^{e_i} \subseteq \cdots \subseteq P_i / P_i^{e_i} \subseteq \O_L / P_i^{e_i} .\] Thus $\dim_k \O_L / P_i^{e_i} = \sum_{j = 0}^{e_i - 1} \dim_k(P_i^j / P_i^{j + 1})$. Note that $P_i^j / P_i^{j + 1}$ is an $\O_L / P_i$-module and $x \in P_i^j \setminus P_i^{j + 1}$ is a generator (for example can prove this after \gls{locon} at $P_i$). Then $\dim_k P_i^j / P_i^{j + 1} = f_i$ and we have \[ \dim_k \O_L / P_i^{e_i} = e_i f_i ,\] and hence \[ \dim_k \prod_{i = 1}^{r} \O_L / P_i^{e_i} = \sum_{i = 1}^{r} e_i f_i .\] LHS: Structure theorem for finitely generated modules over PIDs tells us that $\O_L$ is a free module over $\O_K$ of rank $n$. Thus $\O_L / \pideal \O_L \cong (\O_K / \pideal)^n$ as $k$-vector spaces, hence $\dim_k \O_L / \pideal\O_L = n$. \end{proof} Geometric analogue: $f : X \to Y$ a degree $n$ cover of compact Riemann surfaces. For $y \in Y$: \[ n = \sum_{x \in f^{-1}(y)} e-x \] where $e_x$ is the \gls{ramind} of $x$. Now assume $L / K$ is Galois. Then for any $\sigma \in \Gal(L / K)$, $\sigma(P_i) \cap \O_K = \pideal$ and hence $\sigma(P_i) \in \{P_1, \ldots, P_r\}$. \begin{proposition} \label{prop_11_4} % Proposition 11.4 The action of $\Gal(L / K)$ on $\{P_1, \ldots, P_r\}$ is transitive. \end{proposition} \begin{proof} Suppose not, so that there exists $i \neq j$ such that $\sigma(P_i) \neq P_j$ for all $\sigma \in \Gal(L / K)$. By \nameref{lemma_10_8}, we may choose $x \in \O_L$ such that $x \equiv 0 \mod P_i$, $x \equiv 1 \mod \sigma(P_i)$ for all $\sigma \in \Gal(L / K)$. Then \[ N_{L / K}(x) = \prod_{\sigma \in \Gal(L / K)} \sigma(x) \in \O_K \cap P_i = \pideal \subseteq P_j .\] Since $P_j$ prime, there exists $\tau \in \Gal(L / K)$ such that $\tau(x) \in P_j$. Hence $x \in \tau^{-1}(P_j)$, i.e. $x \equiv 0 \mod \tau^{-1}(P_j)$, contradiction. \end{proof} \begin{corollary} \label{coro_11_5} % Corollary 11.5 Suppose $L / K$ is Galois. Then $e_1 = \cdots = e_r = e$, $f_1 = \cdots = f_r = f$, and we have $n = efr$. \end{corollary} \begin{proof} For any $\sigma \in \Gal(L / K)$ we have \begin{enumerate}[(i)] \item $\pideal \O_L = \sigma(\pideal) \O_L = \sigma(P_1)^{e_1} \cdots \sigma(P_r)^{e_r}$, hence $e_1 = \cdots = e_r$. \item $\O_L / P_i \cong \O_L / \sigma(P_i)$ via $\sigma$. Hence $f_1 = \cdots = f_r$. \qedhere \end{enumerate} \end{proof} \glsnoundefn{cramind}{ramification index}{ramification indexes}% If $L / K$is an extension of complete \glspl{dvf} with normalised \glspl{valt} $v_L$, $v_K$ and \glspl{unif} $\pi_L, \pi_K$, then the ramification index is $e = e_{L / K} = v_L(\pi_K)$. The residue class degree is $f \defeq f_{L / K} = [k_L : k]$. \begin{corollary} \label{coro_11_6} % Corollary 11.6 Let $L / K$ be a finite separable extension. Then $[L : K] = ef$. \end{corollary} $\O_K$ a \gls{dedd}: \begin{fcdefn}[Decomposition] \glsnoundefn{decom}{decomposition}{decompositions}% \glssymboldefn{GP}% \label{defn_11_7} % Definition 11.7 Let $L / K$ be a finite Galois extension. The decomposition at a prime $P$ of $\O_L$ is the subgroup of $\Gal(L / K)$ defined by \[ G_P = \{\sigma \in \Gal(L / K) \st \sigma(P) = P\} .\] \end{fcdefn}