%! TEX root = LF.tex % vim: tw=50 % 05/11/2024 12PM In the following theorems and lemmas we will have: \begin{itemize} \item $\O_K$ a \gls{dedd} \item $K = \Frac(\O_K)$ \item $L / K$ finite separable \item $\O_L$ the \gls{intc} of $\O_K$ in $L$ (which is a \gls{dedd} by \cref{thm_10_2}). \end{itemize} \begin{fclemma}[] \label{lemma_10_4} % Lemma 10.4 Assuming: - $0 \neq x \in \O)K$ Then: \[ (x) = \prod_{\substack{p \neq 0 \\ \text{prime ideal}}} p^{\ddv_p(x)} .\] \end{fclemma} \begin{proof} $x \O_{K, \localp{(p)}} = (p \O_{K, (p)})^{\ddv_p(x)}$ by definition of $\ddv_p(x)$. Lemma follows from property of \gls{locon} \[ I = J \iff I \O_{K, (p)} = J \O_{K, (p)} \] for all prime ideals $p$. \end{proof} \begin{notation*} \glssymboldefn{mover}% $P \le \O_L$, $p \le \O_K$ non-zero prime ideals. We write $P \mid p$ if $p \O_L = P_1^{e_1} \cdots P_r^{e_r}$ and $P \in \{P_1, \ldots, P_r\}$ ($e_i > 0$, $P$ distinct). \end{notation*} \begin{fcthm}[] \label{thm_10_5} % Theorem 10.5 Assuming: - $\O_K$, $\O_L$, $K$, $L$ as usual - for $p$ a non-zero prime ideal of $\O_K$, we write $p\O_L P_1^{e_1} \cdots P_r^{e_r}$ Then: the \glspl{absval} on $L$ extending $|\bullet|_p$ (up to equivalence) are precisely $|\bullet|_{P_1}, \ldots, |\bullet|_{P_L}$. \end{fcthm} \begin{proof} By \cref{lemma_10_4} for any $0 \neq x \in \O_K$ and $i = 1, \ldots, r$ we have $v_{P_i}(x) = e_i v_p(x)$. Hence, up to equivalence, $|\bullet|_{P_i}$ extends $|\bullet|_p$. Now suppose $|\bullet|$ is an \gls{absval} on $L$ extending $|\bullet|_p$. Then $|\bullet|$ is bounded on $\Zbb$, hence is \gls{nonarch}. Let $R = \{x \in L \st |x| \le 1\} \le L$ be the \gls{valr} for $L$ with respect to $|\bullet|$. Then $\O_K \subseteq R$, and since $R$ is \gls{intlyc} in $L$ (\cref{lemma_6_8}), we have $\O_L \subseteq R$. Set \begin{align*} P &\defeq \{x \in \O_L \st |x| < 1\} \\ &= m_R \cap \O_L \end{align*} (where $m_R$ is the maximal ideal of $R$). Hence $P$ a prime ideal in $\O_L$. It is non-zero since $p \subseteq P$. Then $\O_{L, (p)} \subseteq R$, since $s \in \O_L \setminus P \implies |s| = 1$. But $\O_{L, (p)}$ is a \gls{dvr}, hence a maximal subring of $L$, so $\O_{L, (p)} = R$. Hence $|\bullet|$ is \gls{nequ} to $|\bullet|_p$. Since $|\bullet|$ extends $|\bullet|_p$, $P \cap \O_K = p$ so $P_1^{e_1} \cdots P_r^{e_r} \subseteq P$, so $P = P_i$ for some $i$. \end{proof} Let $K$ be a number field. If $\sigma : K \to \Rbb, \Cbb$ is a real or complex embedding, then $x \mapsto |\sigma(x)|_\infty$ defines an \gls{absval} on $K$ (Example Sheet 2) denoted $|\bullet|_\sigma$. \begin{corollary}[] \label{coro_10_6} % Corollary 10.6 Let $K$ be a number field with ring of integers $\O_K$. Then any \gls{absval} on $K$ is \gls{nequ} to either \begin{enumerate}[(i)] \item $|\bullet|_p$ for some non-zero prime ideal of $\O_K$. \item $|\bullet|_\sigma$ for some $\sigma : K \to \Rbb, \Cbb$. \end{enumerate} \end{corollary} \begin{proof} \textbf{Case 1:} $|\bullet|$ \gls{nonarch}. Then $|\bullet| \big|_\Qbb$ is equivalent to $|\bullet|_p$ for some prime $p$ by \nameref{thm_7_9}. \cref{thm_10_5} gives that $|\bullet|$ is \gls{nequ} to $|\bullet|_p$ for some $\pideal \subseteq \O_K$ a prime ideal with $\pideal \mover p$. \textbf{Case 2:} $|\bullet|$ \gls{arch}. See Example Sheet 2. \end{proof} \subsection{Completions} $\O_K$ a \gls{dedd}, $L / K$ a finite separable extension. Let $\pideal \subseteq \O_K$, $P \subseteq \O_L$ be non-zero prime ideals with $P \mover \pideal$. \glssymboldefn{completep}% We write $K_{\pideal}$ and $L_P$ for the completions of $K$ and $L$ with respect to the \glspl{absval} $|\bullet|_{\pideal}$ and $|\bullet|_P$ respectively. \begin{lemma} \label{lemma_10_7} % Lemma 10.7 \phantom{} \begin{enumerate}[(i)] \item The natural $\pi_P : L \otimes_K K_{\pideal} \to L_P$ is surjective. \item $[L_P : K_P] \le [L : K]$. \end{enumerate} \end{lemma} \begin{proof} Let $M = LK_{\pideal} = \Im(\pi_P) \subseteq L_P$. Write $L = K(\alpha)$ then $M = K_{\pideal}(\alpha)$. Hence $M$ is a finite extension of $K_{\pideal}$ and $[M : K_{\pideal}] \le [L : K]$. Moreover $M$ is complete (\cref{thm_6_1}) and since $L \subseteq M \subseteq L_P$, we have $M = L_P$. \end{proof} \begin{fclemma}[Chinese remainder theorem] \label{lemma_10_8} % Lemma 10.8 Assuming: - $R$ a ring - $I_1, \ldots, I_n \subseteq R$ ideals - $I_i + I_j = R$ for all $i \neq j$ Then: \begin{enumerate}[(i)] \item $\bigcap_{i = 1}^n = \prod_{i = 1}^n I_i$ ($=I$ say). \item $R / I \cong \prod_{I = 1}^n R / I_i$. \end{enumerate} \end{fclemma} \begin{proof} Example Sheet 2. \end{proof} \begin{theorem}[] \label{thm_10_9} % Theorem 10.9 The natural map \[ L \otimes_K K\completep\pideal \to \prod_{P \mover \pideal} L_P \] is an isomorphism. \end{theorem} \begin{proof} Write $L = K(\alpha)$ and let $f(X) \in K[X]$ be the minimal polynomial of $\alpha$. Then we have \[ f(X) = f_1(X) \cdots f_r(X) \in K\completep\pideal[X] \] where $f_i(X) \in K\completep\pideal[X]$ are distinct irreducible (separable). Since $L \cong K[X] / f(X)$, \[ L \otimes_K K\completep\pideal \cong K\completep\pideal[X] / f_i(X) \cong \prod_{i = 1}^{r} K\completep\pideal[X] / f_i(X) .\] Set $L_i = K\completep\pideal[X] / f_i(X)$ a finite extension of $K\completep\pideal$. Then $L_i$ contains both $K\completep\pideal$ and $L$ (use $K[X] / f(x) \to K\completep\pideal[X] / f_i(X)$ injective since morphism of fields). Moreover $L$ is dense inside $L_i$ (approximate coefficients of $K\completep\pideal[X] / f_i(X)$ with an element of $K[X] / f_i(X)$). The theorem follows from the following three claims: \begin{enumerate}[(1)] \item $L_i \cong L_P$ for some prime $P$ of $\O_L$ dividing $\pideal$. \item Each $P$ appears at most once. \item Each $P$ appears at least once. \end{enumerate} Proof of claims: \begin{enumerate}[(1)] \item Since $[L_i : K\completep\pideal] < \infty$, there is a unique \gls{absval} on $L_i$ extending $|\bullet|_{\pideal}$. \cref{thm_10_5} gives us that $|\bullet| \big|_L$ is \gls{nequ} to $|\bullet|_P$ for some $P \mover \pideal$. Since $L$ is dense in $L$ and $L_i$ is complete, we have $L_i \cong L_P$. \item Suppose $\varphi : L_i \to L_j$ is an isomorphism preserving $L$ and $K\completep\pideal$; then \[ \varphi : K\completep\pideal[X] / f_i(X) \to K\completep\pideal[X] / f_i(X) \] takes $x$ to $x$ and hence $f_i = f_i$. \item By \cref{lemma_10_7}, the natural map $\pi_P : L \otimes_K K\completep\pideal \to L_P$ is surjective for any prime $P \mover \pideal$. Since $L_P$ is a field, $\pi_P$ factors through $L_i$ for some $i$, and hence $L_i \cong L_P$ by surjectivity of $\pi_P$. \qedhere \end{enumerate} \end{proof}