%! TEX root = LF.tex % vim: tw=50 % 31/10/2024 12PM \begin{fcthm}[] % Theorem 8.5 Assuming: - $K$ is a \gls{lf} Then: $K$ is the completion of a \gls{gf}. \end{fcthm} \begin{proof} \textbf{Case 1:} $\absval|\bullet|$ is \gls{arch}. Then $\Rbb$ is the completion of $\Qbb$, and $\Cbb$ is the completion of $\Qbb(i)$ (with respect to $\absval|\bullet|_\infty$). \textbf{Case 2:} $\absval|\bullet|$ \gls{nonarch}, \gls{eqc}. Then $K \cong \Fbb_q((t))$ is the completion of $\Fbb_q(t)$ with respect to the $t$-adic valuation. \textbf{Case 3:} $\absval|\bullet|$ \gls{nonarch} \gls{mixc}. Then $K = \Qp(\alpha)$, with $\alpha$ a root of a monic irreducible polynomial $f(X) \in \Zp[X]$. Since $\Zbb$ is dense in $\Zp$, we choose $g(X) \in \Zbb[X]$ as in \cref{prop_8_4}. Then $K = \Qbb(\beta)$ with $\beta$ a root of $g(X)$. Since $\Qbb(\beta)$ dense in $\Qp(\beta) = K$, and $K$ is complete, we must have that $K$ is the completion of $\Qbb(\beta)$. \end{proof} \newpage \part{Dedekind domains} \newpage \section{Dedekind domains} \begin{fcdefn}[Dedekind domain] \glsnoundefn{dedd}{Dedekind domain}{Dedekind domains}% % Definition 9.1 A \emph{Dedekind domain} is a ring $R$ such that \begin{enumerate}[(i)] \item $R$ is a Noetherian integral domain. \item $R$ is \gls{intlyc} in $\Frac(R)$. \item Every non-zero prime ideal is maximal. \end{enumerate} \end{fcdefn} \begin{example*} \phantom{} \begin{itemize} \item The ring of integers in a number field is a \gls{dedd}. \item Any PID (hence a \gls{dvr}) is a \gls{dedd}. \end{itemize} \end{example*} \begin{theorem}[] \label{thm_9_2} % utheorem 9.2 A ring $R$ is a \gls{dvr} if and only if $R$ is a \gls{dedd} with exactly one non-zero prime. \end{theorem} \begin{fclemma}[] \label{lemma_9_3} % Lemma 9.3 Assuming: - $R$ is a Noetherian ring - $I \subseteq R$ a non-zero ideal Then: there exists non-zero prime ideals $p_1, \ldots, p_r$ such that $p_1, \ldots, p_r \subseteq I$. \end{fclemma} \begin{proof} Suppose not. Since $R$ is Noetherian, we may choose $I$ maximal with this property. Then $I$ is not prime, so there exists $x, y \in R \setminus I$ such that $x, y \in I$. Let $I_1 + (x)$, $I_2 = I + (y)$. Then by maximality of $I$, there exist $p_1, \ldots, p_r$ and $q_1, \ldots, q_s$ such that $p_1 \cdots p_r \subseteq I_1$ and $q_1 \cdots q_s \subseteq I_2$. Then $p_1 \cdots p_r q_1 \cdots q_s \subseteq I_1 I_2 \subset I$. \end{proof} \begin{fclemma}[] \label{lemma_9_4} % Lemma 9.4 Assuming: - $R$ is an integral domain - $R$ is \gls{intlyc} in $K = \Frac(R)$ - $0 \neq I \subseteq R$ a finitely generated ideal - $x \in K$ Then: if $xI \subseteq I$, we have $x \in R$. \end{fclemma} \begin{proof} Let $I = (c_1, \ldots, c_n)$. We write \[ x c_i = \sum_{j = 1}^{n} a_{ij} c_j \] for some $a_{ij} \in R$. Let $A$ be the matrix $A = (a_{ij})_{1 \le i, j \le n}$ and set $B = x\id_n - A \in M_{n \times n}(K)$. Then in $K^n$ \[ B \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \mathbf{0} .\] Multiply by $\adj(B)$, the adjugate matrix for $B$. We have \[ \det(B) \id_n \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0 .\] Hence $\det(B) = 0$. But $\det B$ is a monic polynomial with coefficients in $R$. Then $x$ is \gls{int} over $R$, hence $x \in R$. \end{proof} \begin{proof}[Proof of \cref{thm_9_2}] \phantom{} \\[-2\baselineskip] \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] Clear. \item[$\Leftarrow$] We need to show $R$ is a PID. The assumption implies that $R$ is a local ring with unique maximal ideal $m$. \textbf{Step 1:} $m$ is principal. Let $0 \neq x \in m$. By \cref{lemma_9_3}, $(x) \supseteq m^n$ for some $n \ge 1$. Let $n$ minimal such that $(x) \supset m^n$, then we may choose $y \in m^{n - 1} \setminus (x)$. Set $\pi = \frac{x}{y}$. Then we have $ym \subseteq m^n \subseteq (x)$ and hence $\pi^{-1}m \subseteq R$. If $\pi^{-1} m \subseteq m$, then $\pi^{-1} \in R$ by \cref{lemma_9_4} and $y \in (x)$, contradiction. Hence $\pi^{-1} m = R$, so $m = \pi R$ is principal. \textbf{Step 2:} $R$ is a PID. Let $I \subseteq R$ be a non-zero ideal. Consider a sequence of fractional ideals $I \subseteq \pi^{-1} I \subseteq \pi^{-2} I \subseteq \cdots$ in $K$. Then since $\pi^{-1} \notin R$, we have $\pi^{-k} I \neq \pi^{-(k + 1)} I$ for all $k$ by \cref{lemma_9_4}. Therefore since $R$ is Noetherian, we may choose $n$ maximal such that $\pi^{-n} I \subseteq R$. If $\pi^{-n} I \subseteq m = (\pi)$, then $\pi^{-(n + 1)} \subseteq R$. So we must have $\pi^{-n} I = R$, and hence $I = (\pi^n)$. \qedhere \end{enumerate} \end{proof} \glssymboldefn{local}% \glsnoundefn{locon}{localisation}{NA}% \glsnoundefn{locise}{localise}{NA}% Let $R$ be an integral domain and $S \subseteq R$ a multiplicatively closed subset ($x, y \in S$ implies $xy \in S$, and also have $1 \in S$). The localisation $S^{-1} R$ of $R$ with respect to $S$ is the ring \[ S^{-1} R = \left\{ \frac{r}{s} \bigg| r \in R, s \in S\right\} \subseteq \Frac(R) .\] If $p$ is a prime ideal in $R$, we write $R_{(p)}$ for the localisation with respect to $S = R \setminus p$. \begin{example*} \phantom{} \begin{itemize} \item $p = (0)$, then $R\localp{(p)} = \Frac(R)$. \item $R = \Zbb$, $\Zbb\localp{(p)} = \left\{ \frac{a}{b} \big| a \in \Zbb, (b, p) = 1 \right\}$, where $p$ is a rational prime. \end{itemize} \end{example*} \textbf{Facts:} (not proved in this course, but can be found in a typical course / textbook on commutative algebra) \begin{itemize} \item $R$ Noetherian implies $S\local R$ is Noetherian. \item \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/c87300de5b8a4e6b.png} \end{center} \end{itemize} \begin{corollary} \label{coro_9_5} % Corollary 9.5 Let $R$ be a \gls{dedd} and $p \subseteq R$ a non-zero prime ideal. Then $R\localp{(p)}$ is a \gls{dvr}. \end{corollary} \begin{proof} By properties of \gls{locon}, $R\localp{(p)}$ is a Noetherian integral domain with a unique non-zero prime ideal $pR\localp{(p)}$. It suffices to show $R\localp{(p)}$ is \gls{intlyc} in $\Frac(R\localp{(p)}) = \Frac(R)$ (since then $R\localp{(p)}$ is a \gls{dedd} hence by \cref{thm_9_2}, $R\localp{(p)}$ is a \gls{dvr}). Let $x \in \Frac(R)$ be \gls{int} over $R\localp{(p)}$. Multiplying by denominators of a monic polynomial satisfied by $x$, we obtain \[ sx^n + a_{n - 1} x^{n - 1} + \cdots + a_0 = 0 ,\] with $a_i \in R$, $s \in S = R \setminus p$. Multiply by $s^{n - 1}$. Then $xs$ is integral over $R$, so $xs \in R$. Hence $x \in R\localp{(p)}$. \end{proof}