Definition 15.1 (Infinite Galois definitions).

  • LK is separable if αL, the minimal polynomial fα(X)K[X] for α is separable.

  • LK is normal if fα(X) splits in L for all αL.

  • LK is Galois if it is separable and normal. Write Gal(LK):=AutK(L) in this case. If LK is a finite Galois extension, then we have a Galois correspondence:

    {subextensions KKL}{subgroups of Gal(LK)}KGal(KK)