Proposition 13.9.
Assuming that:
r
>
e
p
−
1
Then
exp
(
x
)
=
∑
n
=
0
∞
x
n
n
!
converges on
π
r
O
K
and induces an isomorphism
(
π
r
O
K
,
+
)
→
∼
(
1
+
π
r
O
K
,
×
)
.