Definition 1.1 (Absolute value). Let K be a field. An absolute value on K is a function ||:K0 such that

  • (i) |x|=0 if and only if x=0.
  • (ii) |xy|=|x||y| for all x,yK.
  • (iii) |x+y||x|+|y| x,yK (triangly inequality).

We say (K,||) is a valued field.