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Part I

Basic Theory

Example. f(z1,...,2,) € Z[c1,...,2], f(z1,...,2,) = 07 This is hard to study. It is easier

to study

flz1,...,2,) =0 (mod p™)

A local field packages all this information together.



1 Absolute values

-
Definition 1.1 (Absolute value). Let K be a field. An absolute value on K is a function
| e |: K — R>( such that

(i) |z| =0 if and only if x = 0.
(ii) |zy| = |z||y| for all z,y € K.
(iii) |z +y| < |z| + |y| Yo,y € K (triangly inequality).
We say (K, |e|) is a valued field.
Example.
e K =Q,R,C with usual absolute value |a 4 ib| = va? + b%. Write | ® |, for this absolute
value.
e K any field. The trivial absolute value is
0 =0
|| =
1 2#0
Although this is technically an absolute value, it is not useful or interesting, so should be
ignored.
Definition 1.2 (p-adic absolute value). Let K = Q, and p be a prime. For 0 # z € Q, write
x = p" %, where (a,p) =1, (b,p) = 1. The p-adic absolute value is defined to be
0 z=0
|x|p = —® @
p " z=p"%
N
Verification:
(i) Clear
(ii) Write y = p™9. Then
2y, = [p™ o] =pTm T = fal,, Iyl
uly = [P gl =P = |zl, lyl,-
(iii) Without loss of generality, m > n. Then
nad~+p""be n
oty = [ L <o = (o)
P




An absolute value |e| on K induces a metric d(z,y) = |z — y| on K, hence a topology on K.

Definition 1.3 (Place). Let |e|, |8|” be absolute values on a field K. We say |e| and |e|’ are
equivalent if they induce the same topology. An equivalence class of absolute values is called a
place.

Proposition 1.4. Assuming that:
o |e|, |o|” are (non-trivial) absolute values on K.
Then the following are equivalent:
(i) |e| and |e|" are equivalent.
(ii) || <1 < |o]' <1lforall z € K.

(iii) There exists ¢ € Rs¢ such that |z|¢ = |e|’ for all z € K.

Proof.

(i) = (i)
|z] <1 <= 2" - 0 w.r.t |e|

— 2" =5 0 wrt |e|’
— Jz|' <1

(i) = (iii) Note: |z|¢ = |z|’ < clog|z| =log|z|’. Let a € K* such that |a| > 1 (exists since
|e| is non-trivial). We need that Vo € K*,

log|z| _ log|x|’

logJa] ~ logal”
Assume that

log |z| _ log|z|’

logla| ~ logla|’
Choose m,n € Z (with n > 0) such that

log|lz| m  log|x|’

logla] ~n ~logla]’

Then we have
nlog|z| < mlog|al
nlog|z|’ > mlog|al’
Hence ‘%| < 1 and |§—;] > 1, contradiction. Similarly for the case where

log || _ log|x|’

logla| = loglal”"



(iii) = (i) Clear.

O
Remark. | e |2 on C is not an absolute value by our definition. Some authors replace the
triangle inequality by
o +y|? < el ? +Iyl?
for some fixed 5 € R+.
s N
Definition 1.5 (Non-archimedean). An absolute value |8| on K is said to be non-archimedean
if it satisfies the ultrametric inequality:
|+ y| < max(|z[, [y])-
If |e| is not non-archimedean, then it is archimedean.
N J
Example.
o |e| o on R is archimedean.
o |e|, is a non-archimedean absolute value.
Lemma 1.6. Assuming that:
o (K, |e|) is non-archimedean
s n,yc K
e la] <yl
Then |z —y| = |y|.
Proof.
|z —y| < max(|z[, [y]) = |y|
and
|yl < max(|z], |z —y|) <[z -yl
O

Proposition 1.7. Assuming that:

o (K, |e|) is non-archimedean




o (2,)22, asequence in K
o |zp —zpy1| =0

Then (z,)52, is Cauchy. In particular, if K is in addition complete, then (z,)5%; converges.

Proof. For € > 0, choose N such that |z, — x,41| <€ for n > N. Then N <n < m,
|Tn — | = [(n — Tng1) + -+ (Tn—1) —zm)| <e.

The “In particular” is clear.

Example. p = 5, construct sequence ()52 in Z such that
(i) 22 4+1=0 (mod 57)
(ii) Z = Tpy1 (mod 57)

Take x; = 2. Suppose we have constructed x,. Let ac% + 1 = ab" and set z,4+1 = x, + b5™.
Then

22+ 1 =22 + 2b2,,5" + b*5%" + 1
= a5™ 4 2bx, 5™ + b*52"

We choose b such that a + 2bz, = 0 (mod 5). Then we have 22, +1 =0 (mod 5""!). Now
(i) implies that (x,)$%, is Cauchy. Suppose z,, — | € Q. Then z2 — (2. But (i) tells us that

2 — —1, s0 [? = —1, a contradiction. Thus (Q, |e| 5) is not complete.

{ Definition 1.8. The p-adic numbers Q,, is the completion of Q with respect to |0|p.

Analogy with R:

[
@.«\x@
S

Lecture 2



Notation. As is usual when working with metric spaces, we will be using the notation:

B(z,r)={ye K ||z —y| <r}
B(z,r)={ye K ||z -yl <r}

( Lemma 1.9. Assuming that:
o (K,|e|) is a non-archimedean valued field
Then
(i) If z € B(z,r), then B(z,7) = B(z,r) — so open balls don’t have a centre.
(ii) If 2 € B(z,7) then B(x,r) = B(z,7).
(iii) B(x,r) is closed.
(iv) B(z,r) is open.
Proof.

(i) Let y € B(z,r). Then |z — y| < r hence

|z =yl =1z —2)+ (z —y)|
< max(|z — x|, |z — y|)
<r

Thus B(z,r) C B(z,r). 2 follows by symmetry.

(ii) Same as (i).

(iii) Let y ¢ B(z,r). If z € B(z,r) N B(y,r) then B(x,r) = B(z,r) = B(y,r) Hence y € B(x,r).

Hence B(z,r) N B(y,r) = 0.
(iv) If z € B(z,r), then B(z,7) C B(z,7) = B(x,7).

O



2 Valuation Rings

Definition 2.1 (Valuation). Let K be a field. A valuation on K is a function v : K* — R
such that

(i) v(zy) = v(z) + v(y)

(if) v(z +y) = min(v(z), v(y))

&

Fix 0 < a < 1. If v is a valuation on K, then

av®) g0
|z| = o
0 rz=0

determines a non-archimedean absolute value on K.

Conversely a non-archimedean absolute value determines a valuation v(x) = log,, |z|.

Remark.
o Ignore the trivial valuation v(z) = 0.

o Say vy, vy are equivalent if there exists ¢ € R> 0 such that vy (x) = cva(x) for all z € K*.

Example.
o K=Q, vy(z) = —log, |z|, is known as the p-adic valuation.

o If k is a field, consider K = k(t) = Frac(k[t]) the rational function field. Then define

v (t"f(t)> =@
9(t)
for f, g € k[t] with £(0),g(0) # 0. We call this the t-adic valuation.

o K = k((t)) = Frac(k[[t]]) = {Xi2, ait’' | a; € k,n € Z}, known as the field of formal
Laurent series over k. Then we can define

v (Z aiti> = min{i | a; # 0}
I

is the t-adic valuation on K.

{ Definition 2.2. Let (K, |e|) be a non-archimedean valued field. The valuation ring of K is }




defined to be

Ox ={z € K | |2] < 1}(= B(0,1))
(= {o € KX | v(z) > 0} U{0})

Proposition 2.3.
(i) Ok is an open subring of K
(ii) The subsets {z € K | |z| <r} and {x € K | |x| < r} for r <1 are open ideals in O.

(ili) O ={z € K | |z| =1}

Proof.

(i) 0]=0,]1] =1s00,1€ Ok. If x € Ok, then |—z| = |z| hence —z € Ok. If 2,y € Ok, then
|z +y| < max(|z[, [y]) < 1.

Hence z +y € Ok. If z,y € Ok, then |zy| = |z||y| < 1, hence 2y € Ok. Thus Ok is a ring.

Since Ok = B(0,1), it is open.
(ii) Similar to (i).
(ili) Note that |z||z~!| = |zz~!| = 1. Thus
|z =1 — |x_1| =1
— z,2 e Ok
— z €0k O

Notation.
o m:={x €Ok ||z| <1} is a max ideal of Ok.

o k:= Ok /m is the residue field.

Corollary 2.4. Ok is a local ring with unique maximal ideal m (a local ring is a ring with a
unique maximal ideal).

Proof. Let m’ be a maximal ideal. Suppose m’ # m. Then there exists € m’\ m. Using part (iii) of
Proposition 2.3, we get that x is a unit, hence m’ = Ok, a contradiction. O

10



Example. K = Q with |e| . Then

a
OKZ%mZ{bEQ

pfb},

and m = pZy, k = Fy.

Definition 2.5. Let v : K* — R be a valuation. If v(K*) & Z, we say v is a discrete valuation.
K is said to be a discretely valued field. An element m € Ok is uniformiser if v(w) > 0 and
v(m) generates v(K*).

Example. ¢ K = Q with p-adic valuation is a discrete valuation ring.
o K = k(t) with t-adic valuation is a discrete valuation ring.

o K =k(t)(t/2,t1/4t1/8,...). Here, the t-adic valuation is not discrete.

Remark. If v is a discrete valuation, can replace with equivalent one such that v(K*) = Z>
Call such a v normalised valuations (then v(m) = 1 if and only if 7 is a unit).

Lemma 2.6. Assuming that:
e v is a valuation on K
Then the following are equivalent:
(i) v is discrete
(ii) Ok is a PID
(iii) Ok is Noetherian
)

(iv) m is principal

Proof.

(i) = (il) Ok is an integral domain since it is a subset of K, which is an integral domain.

Let I C Ok be a non-zero ideal. Let x € I such that v(z) = min{v(a) | a € T},
which exists since v is discrete. Then we claim

20k ={a € Ok | v(a) > v(z)}

is equal to 1.

11



C (I is an ideal)
D Let y € I. Then v(z~'y) > 0. Hence y = z(z~1y) € 20k.

(ii) = (iii) Clear.
(i) = (iv) Write m = 210 + - -- + 2,Og. Without loss of generality,
v(zy) <wv(ze) < -+ <w(ay).
Then zo,...,z, € 110k. Hence m = 2,0k.

(iv) = (i) Let m = 7Ok for some m € O and let ¢ = v(w). Then if v(z) > 0, z € m
hence v(z) > c¢. Thus v(K*) N (0,¢) = . Since v(K*) is a subgroup of (R,+),
we deduce v(K*) = Z. O

Lecture 3
Suppose v is a discrete valuation on K, m € Ok a uniformiser. For z € K*, let n € Z such

that v(z) = nv(r). Then u = 77"z € O and = ur". In particular, K = Ok [2] and hence
K= F‘rac((’)K).
e "

Definition 2.7 (Discrete valuation ring). A ring R is called a discrete valuation ring (DVR) if
it is a PID with exactly one non-zero prime ideal (necessarily maximal).

Lemma 2.8.
(i) Let v be a discrete valuation on K. Then Ok is a discrete valuation ring.

(ii) Let R be a discrete valuation ring. Then there exists a valuation on K := Frac(R) such
that R = OK.

Proof.

(i) Ok is a PID by Lemma 2.6. Hence any non-zero prime ideal is maximal and hence Ok is a
discrete valuation ring since it is a local ring.

(ii) Let R be a discrete valuation ring, with maximal ideal m. Then m = (7) for some 7 € R. Since
PIDs are UFDs, we may write any « € R\ {0} uniquely as #"u with n > 0, v € R*. Then any
y € K* can be written uniquely as 7™u with u € R*, m € Z. Define v(n™u) = m; check v is a
valuation and O = R. O

Example. Z,), k[[t]] (k a field) are discrete valuation rings.

12



3 The p-adic numbers

Recall that Q,, is the completion of Q with respect to |e| - On Example Sheet 1, we will show that @,
is a field. We also show that |e|  extends to Q, and the associated valuation is discrete.

e N
Definition 3.1. The ring of p-adic integers Z,, is the valuation ring

Ly =z € Q| |z], < 1}.

Facts: Z, is a discrete valuation ring, with maximal ideal pZ,, and non-zero ideals are given by p"Z,.

e N
Proposition. Z, is the closure of Z inside Q,. In particular, Z, is the completion of Z with
respect to |e| .

Proof. Need to show Z is dense in Z,. Note Q is dense in QQ,. Since Z, C Q, is open, we have that
Z, N Q is dense in Z,. Now:

ZpﬂQ{x€Q||z|p§1}{Z€Q

P*b} = Zp)-

Thus it suffices to show Z is dense in Z(p).

Let ¢ € Z), a,b € Z, p1b. For n € N, choose y,, € Z such that by, = a (mod p"). THen y,, — ¢ as
n — 0o.

In particular, Z, is complete and Z C Z,, is dense. O

s N
Definition (Inverse limit). Let (A,)52; be a sequence of sets / groups / rings together with
homomorphisms ¢, : 4,41 — A, (transition maps). Then the inverse limit of (A,)22; is the
set / group / ring defined by

n

{EIA” = {(GN)ZO—I € lillAn p(ant1) = an Vn} .

Define the group / ring operation componentwise.

Notation. Let 6,, : limA, — A,, denote the natural projection.
—

n

The inverse limit satisfies the following universal property:

13



Proposition 3.2 (Universal property of inverse limits). Assuming that:
e Bisaset / group / ring
e 1, are homomorphisms v, : B — A, such that

wn+1
n+1

B— A
NE o

Ay
commutes for all n

Then there exists a unique homomorphism v : B — limA,, such that 6,, oy = ,,.
—

n

Proof. Define

’(/J:B—>ﬁAn

n=1

b ] ¢n(b)

Then v, = @, 01,11 implies that ¥ (b) € {iLnAn. The map is clearly unique (determined by ,, = 6,,01))

n

and is a homomorphism of sets / groups / rings.

O

-~

-

Definition 3.3 (I-adic completion). Let I C R be an ideal (R a ring). The I-adic completion
of R is the .
R :=lim/I"
—

R

where R/I"t! — R/I™ is the natural projection.

J

Note that there exists a natural map ¢ : R — R by the Universal property of inverse limits (there exist
maps R — R/I™). We say R is I-adically complete if it is an isomorphism.

Fact: ker(i: R — R) = (72, I".

n=1

Let (K, |e|) be a non-archimedean valued fieldand 7 € Ok such that |7] < 1.

Proposition 3.4. Assuming that:
e K is complete with respect to | e |

Then

14



(i) Then Og = limOk /7" Ok (O is m-adically complete)
—
(ii) Every z € Ok can be written uniquely as z = E?:o a;7", a; € A, where A C O is a set
of coset representatives for Ok /T1O k.

Proof.

(i) K is complete and Ok is closed, so Ok is complete.

z € (), 7Ok impies v(xz) > nv(w) for all n, and hence z = 0. Hence O — limg /7" Ok is
p—
(@}

injective.

Let (2,)52, € limg /m"Ok and for each n, let y,, € Ok be a lifting of z,, € Ok /7" Ok. Then
—
(@]

Yn — Yns+1 € Ok so that v(y, — ynt1) > no(n).

Thus (y,)22; is a Cauchy sequence in Og. Let y, — y € Ok. Then y maps to (z,)22; in the
ImOk /1" Ok. Thus O — limOk /7" Ok is surjective.
— —

n n

(ii) Exercise on Example Sheet 1. O

Corollary 3.5.

() 2, = ln/p"Z.

(ii) Every element z € Q, can be written uniquely as

0o

_ 7

T = E a;p-,
i=n

withn € Z, a; € {0,1,...,—1}.

Lecture 4
Proof.

(i) It suffices by Proposition 3.4 to show that
Zyp/p" Ly =T /p" L.
Let f, : Z — Z,/p"Z, be the natural map
ker(f,) = {x € Z | 2], < p~"} = p"Z,

hence Z/p"Z — Z,/p™Z, is injective.

15



Let 7 € Z,/p"Z, and let ¢ € Z, be a lift. Since Z is dense in Z,, there exists € Z such that
x € c+p"Z, is open in Z,. Then f,(z) = 7, hence Z/p"Z — Z,/p™Z, is surjective.

(ii) It follows from Proposition 3.4(ii) to p~ "z € Z,, for some n € Z O

Example.

1
—— =1+p+p*+p*+---
L—p

16



Part II

Complete Valued Fields

17



4 Hensel’s Lemma

Theorem 4.1 (Hensel’s Lemma version 1). Assuming that:
o (K,|e|) is a complete discretely valued field
 f(X) € Ok[X]

o assume Ja € Ok such that |f(a)| < |f'(a)|?

Then there exists a unique z € O such that f(z) =0 and |z — a| < |f'(a)].

Proof. Let m € Ok be a uniformiser and let r = v(f’(a)), with v the normalised valuation (v(7) = 1).
We construct a sequence (z,)52; in Ok such that:

(i) f(xn) =0 (mod 7"T2r)

(ii) Zp41 =z, (mod 7"F7)
Take 1 = a: then f(z1) =0 (mod 7l + 2r).

Now we suppose we have constructed 1, ..., z, satisfying (i) and (ii). Define

Tntl = T — f’(l‘ )
n

Since x,, = x; (mod 7"*1), we have

and hence

by (i).

It follows that x,41 = x, (mod 7"*"), so (ii) holds. Note that letting X,Y be indeterminates, we
have

fX4Y)=fo(X)+ fiX)Y + fo(X)Y?+ -+,
where f;(X) € Og[X] and fo(X) = f(X), f1(X) = f/(X). Thus
f@ni1) = fl@n) +cf (wn) + E falan) + E falan) + -
N—————

cpnt2rtl

_ f(xn)

where ¢ = )

18



Since ¢ =0 (mod 7"*") and v(f;(z,)) > 0 we have

f(l'n_t,-l) = f(xn) + f/(l'n)c =0 (mod 7rn+2'r+1),

so (i) holds.
Property (ii) implies that (z,)52; is Cauchy, so let * € Ok such that z, — =z.
limy, 00 f(zn) =0 by (i).

Then f(z) =

Moreover, (ii) impies that
a=z; =z, (modna ) Vn
— a=2x (mod ")

— |z —a| <|f'(a)|
This proves existence.
Uniqueness: suppose " also satisfies f'(z) =0, |2’ —a| < |f'(a)|. Set 6 =2’ — 2 # 0. Then

2" —a| <[f(a)]  |o—d]|<]|f(a),

and the ultrametric inequality implies
0] = |z — 2| <[f(a)] = |f'(2)]-

But
0=f@") = fz+0)=f(z) +f'(z)0 +

~—
=0 le|<|d]?

Hence |f’(z)d] < [6]2, so |f'(z)| < |d], a contradiction.

Corollary 4.2. Let (K, |e|) be a complete discretely valued field. Let f(X) € Og[X] and
¢ € k:= Og/m a simple root of f(X) := f(X) (mod m) € k[X]. Then there exists a unique

x € Ok such that f(x) =0, x =¢ (mod m).

Proof. Apply Theorem 4.1 to a lift ¢ € O of € Then |f(c)| < 1 =|f'(c)|? since € is a simple root. [

Example. f(X)= X2 — 2 has a simple root modulo 7. Thus v2 € Z7; C Q.

Corollary 4.3.
(Z)27)* ifp > 2

pr/((@px)zg {(2/22)3 lfp:2

19



Proof. Case p > 2: Let b € Z,*. Applying to f(X) = X? — b, we find that b € (Z,*)? if and only if
be (FX)2. Thus Z,* /(Z,*)? 2 FS/(FX)? = Z/2Z (F} 2 Z/(p — 1)Z).

We have an isomorphism
Zp™ x (Z,+) = Qp~

given by (u,n) — up™. Thus
Q,* /(@) = (2/22)*.

Case p = 2: Let b € Z;. Consider f(X) = X2 —b. Note f'(X) =2X =0 (mod 2). Let b =1
(mod 8). Then
f)l =27 <272 =f()%

Hensel’s Lemma version 1 gives

be (Z3)? < b=1 (mod8).

Then .

75 )(Z5)? = (Z/87)* = (Z/2Z).
Again using Q5 = Z5 x Z, we find that Q) = (Z/2Z)3. O
- N

Remark. Proof uses the iteration

Tn4+1 = T — fl(l' )7
n

which is the non-archimedean analogue of the unewton Raphson method.

Theorem 4.4 (Hensel’s Lemma version 2). Assuming that:

o (K,|e])is a complete discretely valued field
« f(X) € Ok[X]

20



e f(X):= f(X) (mod m) € k[X] factorises as f(X) = g(X)h(X) in k[X]
e g(X) and h(X) coprime.

Then there is a factorisation
f(X) = g(X)h(X)
in Ok |[X], with g(X) = g(X) (mod m), h(X) = h(X) (mod m) and degg = deg g.

Proof. Example Sheet 1. O

Lecture 5

Corollary 4.5. Let (K, |e|) be a complete discretely valued field. Let
f(X)=a, X"+ - +a, € K[X]

with ag, a, # 0. If f(X) is irreducible, then |a;| < max(|ao|, |ayn|) for all i.

Proof. Upon scaling, we may assume f(X) € Og[X] with max;(|a;|) = 1. Thus we need to show that
max(|ag), |an|) = 1. If not, let r minimal such that |a,| = 1, then 0 < r < n. Thus we have

f(X)=X"(ar+ -+ a,X"") (mod m).

Then Theorem 4.4 implies f(X) = g(X)h(X) with 0 < deg < n. O

21



5 Teichmiiller lifts

Definition 5.1 (Perfect). A ring R of characteristic p > 0 (prime) is a perfect ring if the
Frobenius x — P is a bijection. A field of characteristic p is a perfect field if it is perfect as a
ring.

Remark. Since characteristic R = p, (x+y)? = 2P 4+ yP, so Frobenius is a ring homomorphism.

Example.
(i) Fpn and F, are perfect fields.
(ii) Fp[t] is not perfect, because t ¢ Im(Frob).

(iif) Fp(tz%’") =TF,(t, t%,tp%, ...) is a perfect field (called the perfection of F,(t)).

Fact: A field of characteristic p > 0 is perfect if and only if any finite extension of k is separable.

Vs

Theorem 5.2. Assuming that:
o (K,|e|) is a complete discretely valued field
o such that k := O /m is a perfect field of characterist p
Then there exists a unique map [o] : k — O such that
(i) a =[a] mod m for all a € k
(ii) [ab] = [a][b] for all a,b € k

Moreover if characteristic O = p, then [e] is a ring homomorphism.

Definition 5.3. The element [a] € Ok constructed in Theorem 5.2 is the Teichmiiller lift of a.

Lemma 5.4. Assuming that:
e (K,|e|) is a complete discretely valued field
o such that k := Ok /m is a perfect field of characterist p
o m€ Ok a fixed uniformiser

e 2,y € O such that z = y mod 7% (k > 1)

22




[ Then 2P = yP mod 7F+1. }

Proof. Let x =y + ur® with v € Og. Then

Since Ok /7O has characteristic p, we have p € TOg. Thus

(p> (ur®)iyP =t € TF Ok Vi > 1,
i

hence 2P = y? mod 7*+1. O

1
Proof of Theorem 5.2. Let a € k. For each i > 0 we choose a lift y; € Ok of ar", and we define
@ =yl

We claim that (z;)32; is a Cauchy sequence and its limit is independent of the choice of y;.

k k+1
By construction, y; = y? 1 mod 7. By Lemma 5.4 and induction on k, we have g =y 41 and hence
r; = x;11 mod 't (take i = p). Hence (x;)$2, is Cauchy, so z; — z € Ok.

1
Suppose (z})$2, arises from another choice of y} lifting a?" . Then (z})$2, is Cauchy, and z} — 2’ € Ok.

Let
" T; 1 even
T; = . .
xt 4 odd

Then z! arises from lifting

v JYi teven
Yi y; iodd

Then ! is Cauchy and z — z, 2/ — 2/. So x = 2’ and hence z is independet of the choice of y;. So
we may define [a] = x.

Then z; = yfi = (aﬁ)pi = amod 7. Hence x = a mod 7. So (i) is satisfied.
We let b € k and we choose u; € Ok a lift of b#, and let z; := ufit. Then lim;_, o 2; = [b)].
Now w;y; is a lift of (ab)#7 hence

[ab] = lim @;z; = (lim z;)(lim ;) = [a][D].
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So (ii) is satisfied.

a1 a
If characteristic K = p, y; + u; is a lift of a»” +b»" = (a4 b)#". Then

[a+b) = lim (y; + ;)"
71— 00
= lim ¢¥ +uf
71— 00
= lim z; + %

71— 00

[a] + (8]

Easy to check that [0] =0, [1] = 1, and hence [e] is a ring homomorphism.

Uniqueness: let ¢ : & — Ok be another such map. Then for a € k, gf)(aﬁ) is a lift of aﬁ. It follows
that

[a] = lim ¢(a7")”
= lim (e)

= ¢(a) m

Example. K = Q,, [o] : F), = Zy, a € F), [a]P™' = [a?~'] = [1] = 1. So [a] is a (p — 1)-th root
of unity.

Lemma 5.5. Assuming that:
e (K, |e|) complete discretely valued field
o« k= OK/’ITL - E

e ack”

Then [a] is a root of unity.

Proof.

a €k = aGF;n for some n

— q =) =[] =1 O

Theorem 5.6. Assuming that:
o (K, |e|) complete discretely valued field

o characteristic(K) =p > 0
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e k is perfect
Then K = k((t)) (k= Ox/m).

Proof. Since K = Frac(Ok), it suffices to show O = k[[t]. Fix 7 € Ok a uniformiser, and let
[e] : K — Ok be the Teichmiiller map and define

v E[[t]] = Ok
: (Z t) =Y o
i=0 i=0
Then ¢ is a ring homomorphism since [e] is, and it is a bijection by Proposition 3.4(ii). O

Lecture 6
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6 Extensions of complete valued fields

N

Theorem 6.1. Assuming that: )
o (K,|e|) is a complete discretely valued field
e L/K a finite extension of degree n
Then
(i) |e| extends uniquely to an absolute value |e| ;, on L defined by
lylz = |Nr/(y) 5 Vy € L.
(ii) L is complete with respect to |e| .
J

Recall: If L/ K is finite, Ny, /i : L — K is defined by Ny, x (y) = det g (mult(y) where mult(y) : L — L
is the K-linear map induced by multiplication by .

Facts:

¢ Np,i is multiplicative.

o Let X" +a,_1 X" '+---4ag € K[X] be the minimal polynomial of y € L. Then Ny, x (y) = +a’
for some m > 1 (in fact, m is the degree of L/K|y]).

( N
Definition 6.2 (Norm). Let (K, |e]) be a non-archimedean valued field, V' a vector space over
K. A normon V is a function || e || : V' — Rx( satisfying:

(i) ||zl =0 <= z =0.
(i) [[Az| = [[All|lz] for all A € K, z € V.
(i) o+ yll < max(lo]l lyl) for all 2,y € V.

N J

Example. If V is finite dimensional and ey, ..., e, is a basis of V. The supremum || e ||sup o0

V' is defined by

||stup = miax|xi|,

where z = Y7 | ze;.
Exercise: || ® ||sup is a norm.
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Definition 6.3 (Equivalent norms). Two norms || e ||; and || e ||z on V are equivalent if there
exists C, D € R5¢ such that

Cllzlly < llzllz < Dffzfy vz eV
. J

Fact: A norm defines a topology on V', and equivalent norms induce the same topology.

s ™
Proposition 6.4. Assuming that:

o (K,|e]) is a complete non-archimedean valued field
e V a finite dimensional vector space over K

Then V is complete with respect to || ® ||sup-

Proof. Let (v;)$2, be a Cauchy sequence in V, and let eq,. .., e, be a basis for V.

Write v; = 377, @%e;j. Then (24)72; is a Cauchy sequence in K. Let 2} — z; € K, then v; — v :=

> ey O

s N
Theorem 6.5. Assuming that:

o (K,|e]) is a complete non-archimedean valued field
e V a finite dimensional vector space over K

Then any two norms on K are equivalent. In particular, V' is complete with respect to any
norm (using Proposition 6.4).

Proof. Since equivalence defines an equivalence relation on the set of norms, it suffices to show that
any norm || e || is equivalent to || ® |/sup-

Let eq,..., e, be a basis for V, and set D := max; ||e;|| > 0. Then for z = " | x;e;, we have
el < max ase]) = max o] flea]| < Dmas o] = Dl

To find C such that C|| e ||sup < || ® ||, we induct on n =dim V.

For n =1: ||z|| = ||z1e1]] = |z1] ||le1]], so take C = ||eq]|.

For n > 1: set V; = span(ey,...,€;_1,€i11,...,en). By induction, V; is complete with respect to || e ||,
hence closed.
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Then e; + V; is closed for all i, and hence
S = U e + Vi
i=1

is a closed subset not containing 0. Thus there exists ¢ > 0 such that B(0,C) NS = @ where
B(0,C) ={z eV ||z]| < C}.

Let 0 # z = > | x;¢; and suppose |z;| = max; |2;|. Then ||z|swp = |z;|, and % € S. Thus | || > C,
J J
and hence
2]l = Clzj| = Cllz|sup-
V is complete since it is complete with respect to || ® ||sup (see Proposition 6.4). O
( N

Definition 6.6 (Integral closure). Let R be a subring of S. We say s € S is integral over R if
there exists a monic polynomial f(X) € R[X] such that f(s) = 0.
The integral closure R™(5) of R inside S is defined to be

R — {5 ¢ §| s integral over R}.

We say R is integrally closed in S if R™(S) = R,

Proposition 6.7. R™(5) is a subring of S. Moreover, R™(5) is integrally closed in S.

Proof. Example Sheet 2. O

Lemma 6.8. Assuming that:
e (K, |e|) is non-archimedean valued field

Then Ok is integrally closed in K.

Proof. Let © € K be integral over Og. Without loss of generality, = # 0. Let f(X) = X™ +
an_1 X" 1+ 4 ag € Og[X] such that f(x) =0. Then

1 1
= —Qp—_1— — - — Qo .
X Tp—1
If [z] > 1, we have |—ap—12 — -+ —ag= 171 < 1. Thus |z| <1 = z € Ok. O
[ Lemma 6.9. Oy is the integral closure of O inside L. J
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Proof. Let 0 # y € L and let
F(X) =X+ ag_1 X+ +ag € K[X]
be the minimal (monic) polynomial of y.

Claim: y integral over O if and only if f(X) € Qg[X].

= Clear.

< Let g(X) € Og[X] monic such that g(y) = 0. Then f | g (in K[X]), and hence every root of f is a
root of g. So every root of f in K is integral over Ok, so a; are integral over Ok fori =0,...,d—1.

Hence a; € Oy, (by Lemma 6.8). By Corollary 4.5, |a;| < max(|ag|,1) for i =0,...,d —1. By property
of Nk, we have Ny, /i (y) = £ay’ for m > 1.

Hence
y€0L < |Npk(y)| <1
<~ |ap| <1
Comllé)y 4 la;] <1 Vi,i.e. a; € Ok
Thus Ox ™) = O and proves the Lemma. O

Proof of Theorem 6.1. We first show |e| L = | Ny, (e)  satisfies the three axioms in the definition of

absolute value.

(i) Yl =0 <= |Nyk(y)|7 =0
< Np/k(y)=0
— y=0

1

(ii) lyiyel L = | Nk (Y1, y2)|

n

= |NL/k (Y1) Nk (y2)
=[N k(1) 5 INL/K (y2)] g
= [yl ly2l L

(iii) Set Op ={y € L ||yl < 1}.
Claim: Oy is the integral closure of O inside L.

Assuming this, we prove (iii). Let x,y € L, and without loss of generality assume |z|; < |y| L.
Then

%‘ hence % € Op. Since 1 € O and Opis a ring, we have 1 —1—5 € Or and hence
L

‘1 + 5‘ < 1. Hence |z +y| 1 <l|y| L = max(|z| 1, |y| ) thus (iii) is satisfied.
L
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Lecture 7

So we have proved that | e |1, is an absolute value on L.
Since Ny (x) = 2" for x € K, |z|1 extends [e| on K.
If |e|/ is another absolute value on L extending |e|, then |e|.,| e |} are norms on L.

Theorem 6.5 tells us that | e |7, | e | induce the same topology on L. Hence |e |, = | e | for some
¢ > 0 (by Proposition 1.4) since | o |} extends | e |, we have ¢ = 1.

Now we show that L is complete with respect to | @ |: this is immediate by Theorem 6.5. O

Let (K, | e|) be a complete discretely valued field.

Corollary 6.10. Let L/K be a finite extension. Then
(i) L is discretely valued with respect to | e |L.

(ii) Oy is the integral closure of Ok in L.

Proof.

(i) v a valuation on K, vy valuation on L such that vy extends v. Let n = [L : K], and let
y € L*. Then |y| = |NL/K(y)|% hence v, (y) = Lv(Ny/k(y)), hence v, (L*) < Lo(K*), so vy,
is discrete.

1
n

(ii) Lemma 6.9.

Corollary 6.11. Let K /K be an algebraic closure of K. Then |e| extends to a unique absolute
value | ® | on K.

Proof. Let x € K, then x € L for some L/K finite. Define |z| = |z|;. Well-defined, i.e. independent
of L by the uniqueness in Theorem 6.1.

The axioms for | e |z to be an absolute value can be checked over finite extensions.

Uniqueness: clear. O
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Remark. |e |z on K is never discrete. For example K = Q,,, /p € Q, for all n € Z~o. Then
1
-

op(YP) = ~o(p) =

Q, is not complete with respect to | e g, -
Example Sheet 2: C, := completion of Q, with respect to |e |@, then C,, is algebraically closed.

G J
<
Proposition 6.12. Assuming that:
o L/K finite extension of complete discretely valued fields.
e (i): Ok is compact.
o (ii): The extension of residue fields ky, /k is finite and separable.
Then there exists o € Oy, such that O = Okla].
G J

Later we’ll prove that the (i) implies (ii).
Proof. We’ll choose ae € Oy, such that:

o there exists § € Or[a] a uniformiser for Of,

o Okla] = ki, surjective

k1 /k separable tells us that there exists @ € ky, such that k;, = k(@).
Let a € Op, a lift of @, and ¢g(X) € Ok [X] a monic lift of the minimal polynomial of @.

Fix 7y, € O a uniformiser. Then g(X) € k[X] irreducible and separable, hence g(«) = 0 mod 77, and
g'(a) # 0 mod 7.

If g(o) = 0 mod 7%, then
gla+71) = g(a) + 19’ (o) mod 72
Thus
vr(g9(a+mr)) = vr(rrg'(a)) = vr(r) = 1.
(vr, normalised valuation on L).

Thus either vy (g(«)) =1 or vy (g(a+ 7)) = 1. Upon possibly replacing o by o+ 7, we may assume
vr(g(e)) = 1.
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Set 5 = g(«) € Ok[a] a uniformiser. Then Ok[a] C L is the image of a continuous map:

n
% — L
n
i
(o)., Tp_1) — g ;0
i=0

where n = [K(a) : K]. Since Ok is compact, Ok[a] C L is compact, hence closed. Since ky, = k(a),
Okla] contians a set of coset representatives for kr, = O /807

Let y € Op. Then Proposition 3.4 gives us
Y= Z)\zﬂi, Ai € Ok|al
i=0

Then y, = Y ey X' € Oklal]. Hence y € Oglal, since Og[a] is closed. O
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Local Fields
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Lecture 8

7 Local Fields

Definition 7.1 (Local field). Let (K, |e|) be a valued field. Then K is a local field if it is
complete and locally compact.

Reminder: locally compact means for all x € K, there exists U open and V compact such that
zreUCV.

Example. R and C are compact.

Proposition 7.2. Assuming that:
o (K,|e]) is a non-archimedean complete valued field
Then the following are equivalent:
(i) K is locally compact
(ii) Ok is compact

(iii) v is discrete and k = Ok /m is finite.

Proof.

(i) = (ii) Let U 5 0 be a compact neighbourhood of 0 (0 € U C Z with U open, Z compact).
Then there exists x € O such that xtOx C U. Since Ok is closed, 2Ok is

a1
compact. Hence O is compact (zOx “» O is a homeomorphism).
(i) = (i) Ok compact implies a + O is compact for all a € K. So K is locally compact.

(i) = (iii) Let € m, and A, C Og be a set of coset representatives for O /xOf. Then
Ok = UyeA y + Ok is a disjoint open cover. So A, is finite by compactness of
Ok. So Ok /xQg is finite, hence Ok /mOk is finite.o

Suppose v is not discrete. Then let x1, x4, ... such that
v(xy) > v(rg) > -+ > 0.

Then 20k C 200k C 230k € -+ C Ok. But O /2O is finite so can only have
finitely many subgroups, contradiction.

(ili) = (ii) Since Ok is a metric space, it suffices to prove O is sequentially compact.

~

Let (2,,)22; be a sequence in O, and fix 7 € O a uniformiser. Since 7¢O /7T O =
k, O /7' Ok is finite for all i (O 2 710k 2 -+ D 7' Of). Since O /7O is finite,
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there exists a1 € Ok /mOk and a subsequence (z,,)52; such that z1,, = a mod «

for all n.

Since O /72O is finite, there exists az € Ok /m?Ok and a subsequence (22,)2 4
of (21,)5% 4 such that x2, = az (mod 7)20. Continuing, this, we obtain sequences

(23n)22, for i =1,2,... such that

(1) (Z(i+1)n)nzy is a subsequence of (i )n2y

(2) For any i, there exists a; € O /7' O such that z;, = a; mod 7 for all n.
Then necessarily a; = a;41 mod 7 for all i.

Now choose y; = x;;. This defines a subsequence of (z,,)5 ;. Moreover, y; = a;

oo

-

a;y1 = yir1 mod 7. Thus y; is Cauchy, hence converges by completeness.
Example.
(i) Q, is a local field.
(ii) Fp((2)) is a local field.

More on inverse limits.
Let (A, )n=1 a sequence of sets / groups / rings and ¢, : A,4+1 — A, homeomorphisms.

Definition 7.3 (Profinite topology). Assume A, is finite. The profinite topology on A :=limA,,

—

is the weakest topology on A such that 6,, : A — A,, is continuous for all n, where A,, is equipped

with the discrete topology.
Fact: A =1limA, with the profinite topology is compact, totally disconnected and Hausdorff.

—
-
Proposition 7.4. Assuming that:
e K is a non-archimedean local field
Then under the isomorphism Ok = ImOk /1" Ok (7 € Ok a uniformiser), the topology on
—

Ok coincides with the profinite topology.

Proof. One checks that the sets
B:={a+ 70Ok |ne€Nsi,a €Ok}

is a basis of open sets in both topologies.
For |e|: clear.
For profinite topology: Ok /Ok /7" Ok is continuous if and only if a+7" O isopen for alla € Ok. O
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Goal: Classify all local fields.

e ~
Lemma 7.5. Assuming that:

e K is a non-archimedean local field
e L/K a finite extension

Then L is a local field.
\ Y,

Proof. Theorem 6.1 implies that L is complete and discretely valued. Suffices to show k, := Op/my,
is finite. Let a;,...,a, be a basis for L as a K vector space.

|| ® |lsup (sup norm) equivalent to | e | implies that there exists r > 0 such that
OpC{zeL:|z|sup <}
Take a € K such that |a| > r, then
n
OL - @CLO@OK < L.
i=1

Then Oy is finitely generated as a module over O, hence ky, is finitely generated over k. O

Definition 7.6 (Equal characteristic). A non-archimedean valued field (K, |e|) has equal char-
acteristic if characteristic(K) = characteristic(k). Otherwise it has mized characteristic.

Example. Q, has mixed characteristic.

Theorem 7.7. Assuming that:
e K is a non-archimedean local field of equal characteristic p > 0

Then K = Fp»((t)) for some n > 1.

Proof. K complete discretely valued, characteristic K > 0. Moreover, k = F,» is finite, hence perfect.

By Theorem 5.6, K = F,~((t)). O

Lemma 7.8. Assuming that:
e K afield

Then an absolute value |e| is non-archimedean if and only if |n| is bounded for all n € Z.
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Proof.

= Since | — 1| = 1, | — n| = |n|, it suffices to show that |n| bounded for n > 1. Then note that

| =[14+1+---+1]<1.

< Suppose |n| < B for all n € Z. Let z,y € K with |z| < |y|. Then we have

|z +y|™ =

< [y"B(m +1)

Taking m-th roots gives

3=

[z +y| < [yl[B(m + 1)
The right hand side tends to |y| as m — oo, hence
|z +y| < |yl = max(|z], [y]) 0.

Lecture 9

Theorem 7.9 (Ostrowski’s Theorem). Assuming that:
o |e| is a non-trivial absolute value on Q

Then [e] is equivalent to either the usual absolute value || o or the p-adic absolute value |o|
for some prime p.

Proof. Case: |e| is archimedean. We fix b > 1 an integer such that |b| > 1 (exists by Lemma 7.8). Let
a > 1 be an integer and write b in base a:

b = Cpa™ + cp1a™ e
with 0 < ¢; < a, ¢, # 0. Let B = maxg<c<q—1(|c|), and then we have
[b"] < (m + 1)Bmax(|a|™, 1)
— |b| < [n(log, b+ 1)B]Y™ max(|a|'°8= ", 1) m < log, b"

—1

= |b < max(|a|1°ga b 1)

Then |a| > 1 and
bl < la] 05", (%)
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Switching roles of a and b, we also obtain

Ja| < [b] &0 ()

Then (%) and (x) gives (using log, b = 1282):

~ loga

1 log |b
ogla| _loglb] _\ g
loga logb

Hence |a| = a* for all a € Z+1, hence |z| = |z|2, for all z € Q.

Case 2: |e| is non-archimedean. As in Lemma 7.8, we have |n| < 1 for all n € Z. Since |e| is non-
trivial, there exists n € Z~1 such that |n| < 1. Write n = p7* - - - p& decomposition into prime factors.
Then |p| < 1, for some p € {p1,...,pr}. Suppose |¢g| < 1 for some prime ¢, ¢ # p. Write 1 = rp + sq
with r;s € Z. Then

1=|rp+sql
< max(|rp|, [sq)
<1
contradiction. Thus [p[ = o < 1 and |g| =1 for all primes g # p. Hence |e| is equivalent to [e[,. [

Theorem 7.10. Assuming that:
e (K, |e|) is a non-archimedean local field of mixed characteristic

Then K is a finite extension of Q.

Proof. K mixed characteristic implies that characteristic K = 0, hence Q C K. K non-archimedean
implies that |e| ’@ = ||, for some prime p. Since K is complete, Q, C K. Suffices to show that O
is finite as a Z,-module.

Let m € Ok be a uniformiser, v a normalised valuation and set v(p) = e. Then Ok /pOk = Ok /7¢O
is finite since 'Ok /Tt 1Ok = Ok /mOf is finite. Since F, =2 Z/pZ — Ok /pOk we have Ok /pOk

a finite dimensional vector space over F,,.

Let z1,...,2, € Ok be coset representatives for F,-basis of O /pOx. Then

n
E ;T4
i=1

aiE{O,...,T—l}}
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is a set of coset representatives for Ok /pOk. Let y € Ok. Proposition 3.4(ii) tells us that

i=0 \j=1
n (o)
= <Z aijp ) Z‘J
j=1 \i=0
€z,

Hence Of is finite over Zj,.

(a;; €40,...,p—1})

O

On Example Sheet 2 we will show that if K is complete and archimedean, then K ~ R or C. In

summary:

If K a local field, then either:

(i) K 2R or C (archimedean)

(ii) K = Fpn((t)) (non-archimedean equal characteristic)

(i) K a finite extension of Q, (non-archimedean mixed characteristic)
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8 Global Fields

Definition 8.1 (Global field). A global field is a field which is either:
(i) An algebraic number field

(ii) A global function field, i.e. a finite extension of F(t).

e ~
Lemma 8.2. Assuming that:

o (K,|e|) is a complete discretely valued field
o L/K a finite Galois extension with absolute value |o| ; extending |e|.

Then for € L and o € Gal(L/K), we have |o(z)| L = |z| L.
. J

Proof. Since x — |o(x)| 1, is another absolute value on L extending |e| on K, the result follows from
uniqueness of |e| . O

s N
Lemma 8.3 (Kummer’s Lemma). Assuming that:

o (K, |e|) a complete discretely valued field

e f(X) € K[X] a separable irreducible polynomial with roots ai,...,a, € K%P (K is
the separable closure of K)

« B K*P with
18— a1] <68 — al

fori=2,...,n.

Then oy € K(B).

Proof. Let L = K(8), L' = L(a1,...,ap). Then L'/L is a Galois extension. Let o € Gal(L'/L). We
have

|8 = o(a1)| = |o(B — o)
=8 — o]

using Lemma 8.2. Hence o(ay) = aq, so oy € K(B). O

Proposition 8.4. Assuming that:

o (F,|e]) is a complete discretely valued field
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Lecture 10

n

o f(X) =" ,a;X" € Ok[X] a separable irreducible monic polynomial
e a € K*°P aroot of f

Then there exists € > 0 such that for any g(X) = >_I b;X* € Ok[X] monic with |a; — b;| < e
for all 4, there exists a root 8 of g(X) such that K(a) = K(8).
_ J

“Nearby polynomials define the same extensions”.

Proof. Let ag,...,a, € K°P be the roots of f which are necessarily distinct. Then f’(a;) # 0. We
choose ¢ sufficiently small such that |g(a1)| < |f/(a1)]? and |f/(c1) — ¢'(a1)]| < |f/(a1)|. Then we have
| ()| < |f'(a1)]?> = |¢g'(c1)|? (the equality is by Lemma 1.6).

By Hensel’s Lemma version 1 applied to the field K (1) there exists 8 € K(«a1) such that g(8) = 0
and | — a1 < |¢'(aq)]. Then

g ()| = [f'(an)]

n
=[] ler — oyl
j=1

< a1 — a4
for i = 2,...,n. (Use |z — ;] < 1 since o integral). Since |8 — a1| < |a1 — oy| = |8 — ;| using
Lemma 1.6, we have that Kummer’s Lemma gives that «; € K(3) and hence K (o) = K(f). O

Theorem 8.5. Assuming that:
e K is a local field

Then K is the completion of a global field.

Proof. Case 1: |e| is archimedean. Then R is the completion of @, and C is the completion of Q(%)
(with respect to |e] o).

Case 2: |e| non-archimedean, equal characteristic. Then K = F ((¢)) is the completion of F,(t) with
respect to the t-adic valuation.

Case 3: |e| non-archimedean mixed characteristic. Then K = Q,(«), with a a root of a monic irre-
ducible polynomial f(X) € Z,[X]. Since Z is dense in Z,,, we choose g(X) € Z[X] as in Proposition 8.4.
Then K = Q(8) with 8 a root of g(X). Since Q(5) dense in Q,(8) = K, and K is complete, we must
have that K is the completion of Q(3). O
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9 Dedekind domains

Definition 9.1 (Dedekind domain). A Dedekind domain is a ring R such that
(i) R is a Noetherian integral domain.

(ii) R is integrally closed in Frac(R).

(iii) Every non-zero prime ideal is maximal.

Example.
e The ring of integers in a number field is a Dedekind domain.

o Any PID (hence a discrete valuation ring) is a Dedekind domain.

Theorem 9.2. A ring R is a discrete valuation ring if and only if R is a Dedekind domain with
exactly one non-zero prime.

Lemma 9.3. Assuming that:
e R is a Noetherian ring

e I C R a non-zero ideal

Then there exists non-zero prime ideals py, ..., p, such that p1,...,p. C I.

Proof. Suppose not. Since R is Noetherian, we may choose I maximal with this property. Then I is

not prime, so there exists z,y € R\ I such that z,y € I.

Let I; + (x), I = I + (y). Then by maximality of I, there exist p1,...,p, and q1,...,qs such that

p1---pr CIyand g1 ---qgs € Ip. Then py---prqi---qs € I1lo C 1.

P
Lemma 9.4. Assuming that:

e R is an integral domain
e R is integrally closed in K = Frac(R)
e 0# I C R a finitely generated ideal

e €K

Then if I C I, we have = € R.
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Proof. Let I = (cq,...,c,). We write
xrc; = Z aijcj
j=1
for some a;; € R. Let A be the matrix A = (a;;)1<i j<n and set B = zid, —A € My xn(K).
Then in K"
1
B|:|=o0
Cn

Multiply by adj(B), the adjugate matrix for B. We have

Hence det(B) = 0. But det B is a monic polynomial with coefficients in R. Then z is integral over R,
hence = € R. O

Proof of Theorem 9.2.

= Clear.

< We need to show R is a PID. The assumption implies that R is a local ring with unique maximal
ideal m.

Step 1: m is principal.

n

Let 0 # « € m. By Lemma 9.3, (z) 2 m™ for some n > 1. Let n minimal such that (z) D m",
then we may choose y € m"~1\ (z).

Set m = % Then we have ym C m™ C (x) and hence 7~ 'm C R. If 7='m C m, then 7= € R by
Lemma 9.4 and y € (z), contradiction. Hence 7!

Step 2: R is a PID.

Let I C R be a non-zero ideal. Consider a sequence of fractional ideals I C 7= ' 7 C 772 C --- in
K. Then since 7= ¢ R, we have 7=*I # 7~ (*+UT for all k by Lemma 9.4. Therefore since R is
Noetherian, we may choose n maximal such that 77”1 C R. If 771 C m = (7), then 7=t C R,
So we must have 7~"I = R, and hence I = (7™). O

m = R, so m = mR is principal.

Let R be an integral domain and S C R a multiplicatively closed subset (z,y € S implies xy € S, and
also have 1 € S). The localisation S™'R of R with respect to S is the ring

SR = {r
S

reR,se S} C Frac(R).

If p is a prime ideal in R, we write R, for the localisation with respect to S = R\ p.
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Lecture 11

Example.
e p=(0), then R(,) = Frac(R).

e R=7Z,Zy = {%|a €Z,(bp) = 1}, where p is a rational prime.

Facts: (not proved in this course, but can be found in a typical course / textbook on commutative
algebra)

o R Noetherian implies S™'R is Noetherian.

-1
EWIM e ols in SR B PO «

_ A
J !
7@\‘”\1 ;ou oJS ’P@,K %\. -
=
P S B |

Corollary 9.5. Let R be a Dedekind domain and p C R a non-zero prime ideal. Then R, is
a discrete valuation ring.

Proof. By properties of localisation, R, is a Noetherian integral domain with a unique non-zero prime
ideal pR ).

It suffices to show R(,) is integrally closed in Frac(R(,)) = Frac(R) (since then R,y is a Dedekind
domain hence by Theorem 9.2, R(,) is a discrete valuation ring).

Let = € Frac(R) be integral over R(,). Multiplying by denominators of a monic polynomial satisfied
by x, we obtain
ST+ an_12" 44 a9 =0,

with a; € R, s € S = R\ p. Multiply by s"~!. Then xs is integral over R, so rs € R. Hence
S R(p). O
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Definition 9.6 (Valuation on a Dedekind domain). If R is a Dedekind domain, and p C R
a non-zero prime ideal, we write v, for the normalised valuation on Frac(R) = Frac(R(,))
corresponding to the discrete valuation ring R,).

Example. R =7, p = (p), then v, is the p-adiv valuation.

Theorem 9.7. Assuming that:
e R is a Dedekind domain
e I C R a non-zero ideal
Then Ican be written uniquely as aproduct of prime ideals:
I=p5 - p

(with p; distinct).

Remark. Clear for PIDs (PID implies UFD).

Proof (Sketch). We quote the following properties of localisation:

(i) I =J <= IR, = JR, for all prime ideals p.
(ii) If R a Dedekind domain, p;, p2 non-zero ideals, then

p2Rp,y p1=p2
p1Rp,) =
(p2) {R(pz) P1 # P2

Let I C R be a non-zero ideal. By Lemma 9.3, there are distinct prime ideals p1,...,p, such that

pfl ---pBr C I, where 3; > 0.

Let 0 # p be a prime ideal, p ¢ {p1,...,pr}. Then property (ii) gives that p;R(,) = R(;), and hence
IR@p) = Rp).-

Corollary 9.5 gives IR, = (pil(p,))* = pj Ry, for some 0 < a; < B;. Thus I = pi* ---pi by
property (i).

For uniqueness, if I = p{"---pd = p*---plr then pi" R,y = p;"R(p,) hence a; = ; by unique
factorisation in discrete valuation rings. O
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10 Dedekind domains and extensions
Let L/K be a finite extension. For x € L, we write Try /i () € K for the trace of the K-linear map
L— L, y— xy.

If L/K is separable of degree n and o1,...,0, : L — Kdenotes the set of embeddings of L into an
algebraic closure K, then Try /i (z) = Y1 03(z) € K.

Lemma 10.1. Assuming that:
e L/K a finite separable extension of fields
Then the symmetric bilinear pairing
(0,0) > K
(z,y) = Tr i (zy)

is non-degenerate.

Proof. L/K separable tells us that L = K («) for some o € L. Consider the matrix A for (e, e) in the
K-basis for L given by 1, a,...a" L,

Then A;; = Try/x (a'™7) = [BB'];; where

1 1 o 1
o1(a) og(a)  ---op(@)
B =
0.1<an—1) az(a"_l) O.n(an—l)
So
2
det A = det(B)? = H (oi(a) — 0j())
1<i<j<n

(Vandermonde determinant), which is non-zero since o;(a) # o;(a) for i # j by separability. O

Exercise: On Example Sheet 3 we will show that a finite extension L/K is separable if and only if
the trace form is non-degenerate.

Theorem 10.2. Assuming that:
e Ok a Dedekind domain
o L a finite separable extension of K = Frac(Ok)

Then the integral closure Op, of Ok in L is a Dedekind domain.
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Proof. Oy, a subring of L, hence Oy, is an integral domain.

Need to show:

(i) Oy is Noetherian.
(ii) Oy is integrally closed in L.

(iii) Every # 0 prime ideal P in Oy, is maximal.
Proofs:

(i) Let eq,...,e, € L be a K-basis for L. Upon scaling by K, we may assume e; € O, for all s.
Let f; € L be the dual basis with respect to the trace form (e,e). Let 2 € Of, and write
xr = Z:Il:l )\zfza)\z € K. Then \; = TI'L/K(.’EQZ') € Ok.

(For any z € Op, Trp/k(2) is a sum of elements in K which are integral over Og. Hence
Trp/ i (2) € K is integral over O, hence Try,/x(2) € Ok.)

Thus Op C O fi1 + -+ Ok f, € L. Since Ok is Noetherian, Oy, is finitely generated as an
Ok-module, hence Oy, is Noetherian.

(ii) Example Sheet 2.

(iii) Let P be a non-zero prime ideal of O, and p := PN Ok be a prime ideal of Ok. Let 0 # x € P.
Then x satisfies an equation

"+ ap_ 12" 4+ +ay=0, a; € Ok,

with ag # 0. Then ag € PN Ok is a non-zero element of p, hence p is non-zero, hence p is
maximal.

We have Ok /p — O /P, and O /P is a finite dimensional vector space over O /p. Since O /P

is an integral domain and finite, it is a field. O
[ Remark. Theorem 10.2 holds without the assumption that L/K is separable. J
[ Corollary 10.3. The ring of integers of a number field is a Dedekind domain. J

Convention: Ok is the ring of integers of a number field — p < Ok a non-zero prime ideal. We
normalise | ® |, (absolute value associated to v,, as defined in Definition 9.6) by |z|, = (Np)~v»®)
Lecture 12 where N, = |Ok /p|.

In the following theorems and lemmas we will have:

e Ok a Dedekind domain
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o K =Frac(Ok)
e L/K finite separable

o O the integral closure of Ok in L (which is a Dedekind domain by Theorem 10.2).

Lemma 10.4. Assuming that:
e 0£2€O)K
Then
@= J] »p*™.
p70
prime ideal
N J

Proof. z0k,,, = (pOk,())"*® by definition of v,(z).
Lemma follows from property of localisation
=] < IOK,(p) = JOK,(p)

for all prime ideals p. O

Notation. P < Oy, p < Ok non-zero prime ideals. We write P | p if pOp = P{* --- P and
Pe{P,...,P.} (e; >0, P distinct).

Theorem 10.5. Assuming that:
e Ok, Op, K, L as usual
o for p a non-zero prime ideal of Ok, we write pOp P{* - -+ P"

Then the absolute values on L extending |e |, (up to equivalence) are precisely |®|p,,...,|®|p, .

Proof. By Lemma 10.4 for any 0 # x € Ok and i = 1,...,r we have vp, (z) = e;v,(z). Hence, up to
equivalence, | ® |p, extends | e |,.

Now suppose | e | is an absolute value on L extending | e |,. Then | e | is bounded on Z, hence is
non-archimedean. Let R = {x € L | |x|] < 1} < L be the valuation ring for L with respect to | e |.
Then Ok C R, and since R is integrally closed in L (Lemma 6.8), we have O C R. Set

P:={xeOL||z] <1}

=mrNQOy

(where mp is the maximal ideal of R).
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Hence P a prime ideal in Q. It is non-zero since p C P. Then OL,(p) C R, since s € O\ P =
|s| = 1.

But Oy, () is a discrete valuation ring, hence a maximal subring of L, so Op, ;) = R. Hence | e | is
equivalent to | e |,. Since | e| extends |e|,, PNOxg =pso P*---Pt" C P,so P = P, for some i. 0O

Let K be a number field. If 0 : K — R, C is a real or complex embedding, then z — |o(x)| defines
an absolute value on K (Example Sheet 2) denoted | e |,.

Corollary 10.6. Let K be a number field with ring of integers Q. Then any absolute value
on K is equivalent to either

(i) | @, for some non-zero prime ideal of Ok.

(ii) | ® |, for some 0 : K — R, C.

Proof. Case 1: |e| non-archimedean. Then ||| o 18 equivalent to ||, for some prime p by Ostrowski’s
Theorem. Theorem 10.5 gives that |e | is equivalent to | e |, for some p C Ok a prime ideal with p | p.

Case 2: | o | archimedean. See Example Sheet 2. O

10.1 Completions

Ok a Dedekind domain, L/K a finite separable extension.
Let p C Ok, P C Oy, be non-zero prime ideals with P | p.

We write K, and Lp for the completions of K and L with respect to the absolute values | |, and
| ® | p respectively.

Lemma 10.7.
(i) The natural 7p : L ®x K, — Lp is surjective.

(ii) [Lp: Kp] <[L:K].

Proof. Let M = LK, =Im(np) C Lp.

Write L = K(«) then M = K,(a). Hence M is a finite extension of K, and [M : K,| < [L : K].
Moreover M is complete (Theorem 6.1) and since L C M C Lp, we have M = Lp. O
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Lemma 10.8 (Chinese remainder theorem). Assuming that:
e R aring
e I1,...,I, C R ideals
o I; +I;=Rforalli#j
Then
(1) Mizy = Ilizy L (=1 say).
(i) R/I =TI}, R/L.

N J
Proof. Example Sheet 2. O
e ™

Theorem 10.9. The natural map

Lok K, — []Lp
Plp

is an isomorphism.

Proof. Write L = K (&) and let f(X) € K[X] be the minimal polynomial of o. Then we have

f(X) = fi(X) - fr(X) € Ky[X]

where f;(X) € K,[X] are distinct irreducible (separable). Since L = K[X]/f(X),

L®KKP /fl HKP /fz

Set L; = K,[X]/fi(X) a finite extension of K. Then L, contains both K, and L (use K[X]/f(z) —
K,[X]/fi(X) injective since morphism of fields). Moreover L is dense inside L; (approximate coeffi-
cients of K,[X]/fi(X) with an element of K[X]/f;(X)).

The theorem follows from the following three claims:

(1) L; = Lp for some prime P of Of, dividing p.
(2) Each P appears at most once.

(3) Each P appears at least once.

Proof of claims:
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(1) Since [L; : Kp] < oo, there is a unique absolute value on L; extending | e |,. Theorem 10.5 gives
us that | e HL is equivalent to | @ |p for some P | p. Since L is dense in L and L; is complete, we
have L; = Lp.

(2) Suppose ¢ : L; — L; is an isomorphism preserving L and K,; then
¢ Kp[X]/ fi(X) = K,p[X]/fi(X)
takes x to x and hence f; = f;.

(3) By Lemma 10.7, the natural map np : L ® x K, — Lp is surjective for any prime P | p.

Since Lp is a field, wp factors through L; for some i, and hence L; = Lp by surjectivity of mp. O

Lecture 13

Example. K = Q, L = Q(i), f(X) = X2 + 1. Hensel’s Lemma version 1 gives us that
v—1 € Q5. Hence (5) splies in Q(2), i.e. 501 = p1po.

Corollary 10.10. Let 0 # p C Ok a prime ideal. For x € L we have

Np/k(x) = H Npp/L, ().
Plp

Proof. Let By,...,B, be bases for Lp,,...,Lp, as K,-vector spaces. Then B = |, B; is a basis for
Lok K, over K. Let [mult(x)]p (respectively [mult(z)]p,) denote the matrix for mult(z) : Lox K, —
L ®k K, (respectively Lp, — Lp,) with respect to the basis B (respectively B;). Then

[mult(z)] 5,

[mult(z)]p =
[mult(x)]

r

hence

Nk (v) = det([mult(x)]p)

= H det[mult(z)] s,

i=1

HNLPi/Kp (LU) D
=1
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11 Decomposition groups

Definition 11.1 (Ramification). Let 0 # p be a prime ideal of O, and
pOL = PP
with P; distinct prime ideals in Oy, and e; > 0.

(i) e; is the ramification index of P; over p.

(ii) We say p ramifies in L if some ¢; > 1.

Example. Ok = C[t], Op = C[T]. O — Of sends t — T™. Then tO = T"Oy, so the
ramification index of (T') over () is n.
Corresponds geometrically to the degree n of covering of Riemann surfaces C — C, =z +— z".

Definition 11.2 (Residue class degree). f; :=[Orn/P; : Og/p] is the residue class degree of P;
over p.

[ Theorem 11.3. >/ e;f; = [L: K. J

Proof. Let S = Ok \ (p). Exercise (properties of localisation):

(1) S71Oy is the integral closure of S™1O in L.

(2) S7t,Slo, = Stpp .. ST pe

(3) S710L/S7IP, 2O /P; and S™1Ok/S71p = Ok /p.

In particular, (2) and (3) imply e; and f; don’t change when we replace O and Op, by S~!Ox and
S~1Oy.

Thus we may assume that O is a discrete valuation ring (hence a PID). By Chinese remainder
theorem, we have

Or/pOL =[] OL/Pf.

i=1

We count dimension as k := Ok /p vector spaces.
RHS: for each i, there exists a decreasing sequence of k-suibspaces

0C Pierl/Piei C...CPJP" COL/P.
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Thus dimy O /Pf* = ngol dimy (P? /P/™). Note that P/ /P/*! is an O /P;-module and z € P/ \
P:7+1

)T is a generator (for example can prove this after localisation at P;).

Then dimy, P/ /P/*! = f; and we have
dimy Or/P{" = e; fi,

and hence
-

dimk ﬁ OL/Piei = Z eifi.

i=1 =1

LHS: Structure theorem for finitely generated modules over PIDs tells us that Oy, is a free module
over Ok of rank n.

Thus O /pOr = (Ok/p)™ as k-vector spaces, hence dimy, O /pOr = n. O

Geometric analogue:

f:X — Y adegree n cover of compact Riemann surfaces. For y € Y:
n = Z e —x
z€f 1 (y)

where e, is the ramification index of . Now assume L/K is Galois. Then for any ¢ € Gal(L/K),
o(P;))N Ok =p and hence o(P;) € {Py,...,P.}.

{ Proposition 11.4. The action of Gal(L/K) on {Py, ..., P.} is transitive. J

Proof. Suppose not, so that there exists ¢ # j such that o(P;) # P; for all 0 € Gal(L/K).

By Chinese remainder theorem, we may choose x € O, such that £ =0 mod P;, =1 mod o(F;)
for all 0 € Gal(L/K). Then

NL/K(x): H J(LC)EOKHPZ:]JQPJ
oe€Gal(L/K)

Since P; prime, there exists 7 € Gal(L/K) such that 7(x) € P;. Hence x € 771(P)), i.e. = =
mod 7 }(P;), contradiction.

O o

Corollary 11.5. Suppose L/K is Galois. Thene; =---=e, =e, f{ =--- = f, = f, and we
have n = efr.

Proof. For any o € Gal(L/K) we have

54



Lecture 14

(1) pOL = U(p)OL — U(Pl)el .. .O—(PT)C)«7 hence el == e,
(ii) Op/P; =2 Or/o(P;) via 0. Hence f; =--- = f,. 0

If L/Kis an extension of complete discretely valued fields with normalised valuations vy, vk and
uniformisers 7y, Tx, then the ramification index is e = e, JK = vr(mk). The residue class degree is

= fo/x = ko : k.

[ Corollary 11.6. Let L/K be a finite separable extension. Then [L : K| = ef. J

Ok a Dedekind domain:

- N
Definition 11.7 (Decomposition). Let L/K be a finite Galois extension. The decomposition
at a prime P of Oy, is the subgroup of Gal(L/K) defined by

Gp = {0 € Gal(L/K) | o(P) = P}.

J
s N
Proposition 11.8. Assuming that:
¢ Ok a Dedekind domain
e L/K a finite Galois extension
e 0# P C Of a prime ideal
« PlpCOxk
Then
(i) Lp/K, is Galois.
(ii) There is a natural map
res : Gal(Lp/K,) = Gal(L/K)
which is injective and has image G p.
Proof.

(i) L/K Galois implies that L is a splitting field of a separable polynomial f(X) € K[X]. Hence Lp
is the splitting field of f(X) € K{X], hence Lp/K, is Galois.

(ii) Let 0 € Gal(Lp/Ky), then (L) = L since L/K is normal, hence we have a map res :
Gal(Lp/K,) — Gal(L/K), 0 + o|r. Since L is dense in Lp, res is injective. By Lemma 8.2, we
have

lo(x)|p = [z[p
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for all o € Gal(Lp/K,) and « € Lp. Hence o(P) = P for all ¢ € Gal(Lp/K,) and hence

res(o) € Gp for all o € Gal(Lp/Ky).

To show surjectivity, it suffices to show that

|Gp|=ef =[Lp: Ky

Write pOp, = Pt --- Per, f = [O1/P : Ok /p]. Then

o |Gp| = LEAEIOL _ eft — o f (using Corollary 11.5).

o [Lp: K,] =ef. Apply Corollary 11.6 to Lp/K,, noting that e, f don’t change when we

take completions.
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Part V

Ramification Theory

p = p1p2 in Z[i] if and only if p = 22 + 2.

We will consider L/K extension of algebraic number fields with [L : K] = n.
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12 Different and discriminant

Notation. Let z1,...,2, € L. Set

A(l‘l, 500 ,xn) = det(TrL/K(xixj)) eK

= det (Z Uk(%)%(%‘))

k=1
= det(BB")

where o, : L — K are distinct embeddings and B = (0;(z;)).

Note:

o Ify, = Z;—;l ai;Tj, a;; € K, then
A(yla s ayn) = det(A)QA(ﬂfl, ey :En)
where A = (a;;).

o Ifxy,...,2, € O, then A(z1,...,2,) € Ok.

Lemma 12.1. Assuming that:

e k a perfect field

e R a k-algebra which is finite dimensional as a k-vector space
Then the Trace form

(e,0):RXR— R
(z,y) = Trrk(zy) (= Try(mult(zy)))

is non-degenerate if and only if R = ky X --- X k,. where k;/k is a finite separable extension of k.

Proof. Example Sheet 3.

Theorem 12.2. Assuming that:
e 0# p C Ok prime ideal

Then

(i) If p ramifies in L, then for every x1,...,x, € O, we have A(z1,...,2,) = 0 mod p.
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L (ii) If p is unramified in L, then there exists x1,...,x, such that p{ (A(z1,...,z,)). j

Proof.
(i) Let pOp = P{* -+ Ptr, 0 # P; C O distinct prime ideals, e; > 0. Define
R := OL/pOL CET HOL/P?-
i=1

If p ramifies, then O, /pOy, has nilpotents. Hence
A(fl,...,fn)zo VfiEOL/]JOL.

Then using the fact that
O, —— R=0./p0

J/’I‘I'L/K lTrR/k'

OK — k= OK/]J
commutes, we get that

A(xy,...,2,) =0mod p Va; € Or/pOyp.

(ii) p unramified implies R = O /pOy is a product of finite extensions of k. By Lemma 12.1, we

get that the Trace form is non-degenerate, hence for Z1,...,Z, a basis of Or/pOy, as a k vector
space, we have A(Z1,...,T,) # 0. So thee exist z1,...,z, € Of such that
A(zy,...,2,) Z 0 mod p. O
e N
Definition 12.3 (Discriminant). The discriminant is the ideal dj/x € Ok generated by
A(zy,...,x,) for all choices of z1,...,z, € OF.
N J
p
Corollary 12.4. p ramifies L if and only if p | dz k. In particular, only finitely many primes
ramify in L.
S
e N

Definition 12.5 (Inverse different). The inverse different is

Dy} ={y € L: Tryx(ay) € Ok Vo € OL},

an O, submodule of L.
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[ Lemma 12.6. DZ}K is a fractional ideal in L. }

Proof. Let x1,...,2, € Op a K-basis for L/K. Set
d:=A(wy,...,2,) = det(Trp i (viz;)),
which is non-zero since separable.

1 . r
For z € Dy write x = > i1

Ajz; with \; € K. We show \; € 10x. We have

TrL/K(xxi) = Z}\] TrL/K(xixj) S OK.

Jj=1

Set A;j = Trp /g (zs25). Multiplying by Adj(A) € M,(Ok), we get

A1 Trr) ke (z21)
al | =aga|
An Trp k(v2,)
Since \; € %(’)K, we have x € %(’)L. Thus DZ/lK < ﬁ, SO DZ/lK is a fractional ideal. O

Lecture 15 The inverse Dy gk of DZ}K is the different ideal.

{ Remark. Dy g < O since Op C DZ/IK. }

Let I, Ix be the groups of fractional ideals.

Theorem 9.7 gives that

I = ® Z, T = ®

0#P 0#P
prime ideals in O, prime ideals in Ok

Define Ny, /i : IL — I induced by P pf forp=PNOgk and f = f(P/p).

Fact:

(Use Corollary 10.10 and vy (Np /i, (2)) = fpjpv(x) for z € Lp* where vy, and vp are the normalised
valuations for Lp, K ).
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[ Theorem 12.7. NL/K(DL/K) :dL/K }

Proof. First assume Ok, O, are PIDs. Let x1,...,z, be an Og-basis for Oy and y1,...,yn be the
dual basis with respect to trace form. Then y1,...,y, is a basis for DE/IK. Let 01,...,0,: L — K be
the distinct embeddings. Have

> oilay)oi(yr) = Tr(wjyn) = G-
=1
But

A(z1,...,z,) = det(o(x5))%.

Thus
A(Z'l, e 7xn)A(y17 e 7yn) =1

Write DZ}K = B0y since § € L. Then

dZ}K = (A(zy,..., )Y
= (A(y1,---+¥n))
(

= (A(Bz1,...,Bzy,)) change of basis matrix is invertible in O
=Ny (B)A(z1,. .., 2,) change of basis matrix is [mult(3)]
Thus
—1 —1 32
dL/K = NL/K(DL/K) dr/k
S0

Np/k(Dr/k) = dp/k-

In general, localise at S = OK\p and use S_lDL/K = Ds—loL/S—loK. Then S_ldL/K = ds—lOL/S—loK.
Details omitted. O

Theorem 12.8. Assuming that:
L OL = OK[Oé]
o « has monic minimal polynomial g(X) € Og[X]

Then Dy x = (¢'(@)).
g Y,

Proof. Let a = aq,...,a, be the roots of g. Write

9(X)
X —«o

= Bp1 X" b+ B X + B
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with 8; € Op and S5,,_1 = 1. We claim

n

Z g( ) /a’L - X"
—~ X —a;g()

for0<r<n-1.
Indeed the difference is a palynomial of degree < n, which vanishes for X = a1,...,a,. Equate

C()efﬁClen(S ()f .X y Wthh glVeS
( )
/ g (”)

Since 1,c,...,a" ! is an Ok basis for Oy, D;}K has an Ok basis
Bo P Bn-1
g'(a) g'(a)” " g(a)
1
g’ (@)
Note all of these are O, multiples of the last term, since the 3; are in Op. So DZ/IK = m, hence
Dp k= (9'(a)). O

P a prime ideal of O, p = Oxg N P. Dy, /K, using Ok, Or,. We identify Dy, /k, with a power P.

{ Theorem 12.9. Dy x = [[p DL, /K, (finite product, see later). J

Proof. Let x € L, p C Og. Then

TrL/K(x) =Y Trp,/x,(x) (%)
Plp

(of Corollary 10.10).
Let 7(P) = vp(Dr/k), 8(P) = vp(Drp/k,)-
C (i.e. 7(P) > s(P)). Let z € L with vp(x) > —s(P) for all P. Then Try,/k,(vy) € Ok,, for all
y € L and for all P. Using (*) we get
TI'L/K(Iy)EOKp VyGOL,VP

Thus
Trp/k(2y) € Ok Yy e Or

0 Dy € Tl Di iy
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D (ie. (P ) < 5(P)). Fix P and let x € P77\ P=7(P)+1 Then vp(x) = —r(P), vp(z) > 0 for all
P’ # P. By (x), we have
Trr,/k, (vy) = Trp i (vy) Z Trr, k, (zy) Yy € Of
P'lp
P'#£P
hence
TI‘LP/Kp(.’Ey)EOKP VyEOLP.
HencexEDL /K, e —vp(x) =r(P) < s(P). So Dk 2 [1p DLy, - O
[ Corollary 12.10. dy/x = lep drp/K,- J
Proof. Apply N,k to DL/K:HP“JDLP/Kp' O
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Lecture 16

13 Unramified and totally ramified extensions of local fields

Let L/K be a finite separable extension of non-archimedean local fields. Corollary 11.6 implies

[L:K]=er/xfr/k- (*)

Lemma 13.1. Assuming that:
o M/L/K finite separable extensions of local fields
Then
(1) fu/x = foyxfu)e

(i) eM/K = €L/KfM/L

Proof.

() fayx = lkn k] = [knr  krllkr < k] = faynfr) i
(ii) (i) and (x). O

Definition 13.2 (Unramified / ramified / totally ramified). The extension L/K is said to be:
 unramified if e, /g = 1 (equivalently f,x = [L: K]).
o ramified if e,/ > 1 (equivalently fr,x < [L: K]).

o totally ramified if e = [L : K| (equivalently fr/x = 1).
L J

From now on in this course: if unspecified L/K is a finite separable extension of (non-archimedean)
local fields. Also, all local fields that we consider from now on will be non-archimedean.

e N
Theorem 13.3. Assuming that:

e L/K a finite separable extension of non-archimedean local fields
Then there exists a field Ky, K C Kg C L and such that
(i) Ko is unramified
(ii) L/Ky is totally ramified
Moreover [L : Ko] = ek, [Ko : K] = fr/x and Ko/K is Galois.

64



Proof. Let k =TF,, so that kp =Fyr, fr/x = f. Set m = ¢ —1, [e] : F,s — L the Teichmiiller map
for L.

Let ¢, := [@] for a a generator of IE‘qu. ¢m a primitive m-th root of unity. Set Ko = K((,,) C L, then
Koy/K is Galois and has residue field kg = F, (o) = k. Hence fr,x, =1, i.e. L/Kj is totally ramified.

Let res : Gal(Ky/K) — Gal(ko/k) be the natural map. For o € Gal(Ky/K). We have o((n) = (m
if 0(¢m) = ¢ mod m (since piy, (Ko) = pm (ko) by Hensel’s Lemma version 1). Hence res is injective.
Thus | Gal(Ko/K)| < | Gal(ko/k)| = fr, K, 50 [Ko: K] = fk, /K-

Hence res is an isomorphism, and Ky/K is unramified. O

- N
Theorem 13.4. Assuming that:

° I{j:Fq
e n>1

Then there exists a unique unramified L/K of degree n. Moreover, L/K is Galois and the
natural Gal(L/K) — Gal(kr/k) is an isomorphism. In particular, Gal(L/K) = (Froby k) is
cyclic, where Froby i (z) = 7 mod my, for all z € Of.

Proof. For n > 1, take L = K((,,) where m = ¢ — 1.

As in Theorem 13.3:
Gal(L/K) = Gal(kr/K) = Gal(Fgn /Fy).

Hence Gal(L/K) is cyclic, generated by a lift of x — 2.

Uniqueness: L/K of degree n unramified. Then Teichmiiller gives ¢, € L, so L = K (). O

Corollary 13.5. L/K a finite Galois extension. Then res : Gal(L/K) — Gal(kr/k) is surjec-

tive.

Proof. res factorises as
Gal(L/K) — Gal(Ko/K) = Gal(kr/k). O

Definition 13.6 (Inertial subgroup). The inertial subgroup is

Ik = ker(Gal(L/K) — Gal(kr/k)).

¢ Since eL/KfL/K = [L . KL we have |IL/K| = eL/K'
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o Ik = Gal(L/Ky) — Ky as in Theorem 13.3.

s N
Definition 13.7 (Eisenstein polynomial). f(x) = 2" + a, 12" ' + -+ + a9 € Oxla] is
FEisenstein if vk (a;) > 1 for all 4, and vg (ag) = 1.

\ J

Fact: f(z) Eisenstein implies f(z) irreducible.

Theorem 13.8. (i) Let L/K finite totally ramified, 7z, € O, a uniformiser. Then the mini-
mal polynomial of 7y, is Eisenstein and O = Og[rr] (hence L = K (7))

(ii) Conversely, if f(z) € Ok|z] is Eisenstein and a root of if f, then L := K(«)/K is totally
ramified and « is a uniformiser of L.

Proof.

(i) [L:K]=e=ep k. Let
f@)=a™ 4+ am_12™ + -+ ag € Oklz]

the minimal polynomial for 7r;,. Then m < e. Since vy (K*) = eZ, we have v, (a;7%) = e mod e,
for ¢ < m. Hence these terms have distinct valuations. As

m—1
T =— Z ;T .
i=0
we have
m=vn(ef) = _min (i +evie(ar)

hence vk (a;) > 1 for all 3.

Hence vk (ag) = 1 and m = e. Thus f(z) is Eisenstein and L = K(ny). For y € L, we write
Y= Zf:_(} WiLbi, b; € K. Then
vr(y) = ogrglgl?fl(l + evi (b;)).

Thus

yeOp < vr(y) >0
— UK(bi) > 0Vi
<~ Yy E< OK[ﬂ'L]

(i) Let f(z) = 2" +ap—12™ ' +---+ao is Eisenstein and e = ey /x. Thus vy (a;) > e and vy (ag) = e.
If vr () < 0, we have
n—1
v (@) < vy, (Z aiai>
=0
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hence vy, (a) > 0. For i # 0, vy, (a;a') > e = vy (ag). Therefore

v (a™) =g (— iam/) =wvr(ag) =e.
=0

Hence nvp (o) =e. But n=[L: K] > e, son =¢e and vy (a) = 1.

13.1 Structure of Units

Let [K : Q] < 00, € := eg/q,, ™ a uniformiser in K.

P
Proposition 13.9. Assuming that:

o >

e
p—1

n S . . .
Then exp(x) = Y~ £ converges on 7" Ok and induces an isomorphism

(7" Ok, +) = (1 + 7" Ok, X).

Proof.

vi (nl) = evy(n!)
_ eln—s,(n)
p—1
“<(5=1)

For x € 7"Ok and n > 1,

Example Sheet 1

Lecture 17 Hence vk (%) — 00 as n — 00. Thus exp(x) converges.
Since vg (”;T,) >rforaln>1, exp(z) €1+ n"0Ok.

Consider log: 1 + 710 — 7" Ok.



which converges as before.
Recall identities in Q[[X,Y]]:

exp(X +Y) = exp(X) exp(Y)
exp(log(l4+ X)) =14+ X
log(exp(X)) = X

Thus exp; (1"Ok, +) = (1 + 7" O, x) is an isomorphism. O
K any local field: Uk := O, m € Ok uniformiser.
Definition 13.10 (s-th unit group). For s € Z, the s-th unit group UI((S) is defined by
U = (1+ 70k, x).
Set UI(?) = Ugk. Then we have
...QUI(?) QU}(?_I) g...gUl(?) =Ugk.
N J
Proposition 13.11.
() U UL = (k*, %) (k= O /)
(if) U;?/USH) = (k,+) for s >1
N J
Proof.
(i) Reduction modulo 7. Oj — k* is surfective with kernel 1 + 7O = 1(<1)'

(ii) f;Ul(f) =k, 1+ 72—z mod .

1+ 7°2)(1+7°y) =14+ 7°(x +y + 7°zy).

x+y+ m°ry = x + y mod 7, hence f is a group homomorphism, surjective with kernel U]((S'H).

O

Remark. Let [K : Q,] < co. Proposition 13.9, 7?7 implies that there exists finite index subgroup

of O isomorphism to (O, +).
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Example. Z,, p > 2, e =1, take r = 1. Then
Ly = (Z/pL)* x (1+pLy) 2 Z/(p— 1)L X L,

T
T +— (.'L' modp, [xnlodp])

p =2, take r = 2.

Z5 5 (ZJAZ)* x (1 + p*Zy) 2 Z/27 X Ly
T (.T mod 4, x)
e(x)

_J4+1 z=1 (mod 4)
E(x)_{—l x=-1 (mod 4)

where

So:
Z)2Z  iftp>2

2 {(2/22)2 it p=2
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14 Higher Ramification Groups

Let L/K be a finite Galois extension of local fields, and 77, € Op, a uniformiser.

s N
Definition 14.1 (s-th ramification group). Let vy be a normalised valuation in Op. For
s € R>_4, the s-th ramification group is

Gs(L/K) = {0 € Gal(K) | v (o(z) —2) > s+ 1 Va € OL}.

N
s N
Remark. Gy only changes at integers.
G, s € R>_; used to define upper numbering.
N J
Example.
G_1(L/K) = Gal(L/K)
Go(L/K)={oc € Gal(L/K) | o(z) = x mod 7, Vz € O}
=ker(Gal(L/K) — Gal(kr/k))
=11k
s N
Note. For s € Z>,
Gs(L/K) = ker(Gal(L/K) — Aut(Or,/m5T10L))
hence G5(L/K) is normal in G_.
- CGs CGs-1 C--- C Gy =Gal(L/K).
\ J

Theorem 14.2.
(i) For s > 1,
G = {O’ € Gy | UL(J(’]TL)—WL) > S+1}.
(i) Nozo Gn = {1}

(iii) Let s € Z>o. Then there exists an injective group homomorphism

Gs/Geyr — UL julsty

o(rr)

induced by o — =—. This map is independent of the choice of 7p,.

Proof. Let Ky C L be a maximal unramified extension of K in L. Upon replacing K by K, we may
assume that L/K is totally ramified.
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(i) Theorem 13.8 implies O /Ok[rp]. Suppose vi(o(nr)—7L) > s+1. Let © € O, then z = f(ny),
f(X) € Ok[X].

o(x) —x=o(f(rL)) — fmL)
flo(mr)) — f(7z)

= (o(mL) —7r)g(mL)
for some g(X) € Ok[X], using the fact that X" —Y" = (X — Y)(X" 1 + ... + Y1), Thus

vp(o(z) — @) =vp(o(mr) —7) +ve(g(mL)) = s+ 1.
>0

(ii) Suppose o € Gal(L/K), o # 1. Then o(r) # 7, because L = K () and hence vy (o(mp) —
7)) < 00. Thus o ¢ G, for some s> 0 by (i).

(iii) Note: for o € G, s € Z>q,
O’(TFL) €y, +7TZ+IOL
hence
o) ¢y 4 mo, = U,
L

We claim

0: G, — U ult

= o(rr)
T

is a group homomorphism with kernel Gs;1. For 0,7 € G, let 7(7,) = ung, uw € OF . Then

or(ny)  o(r(ny)) 7(7L)
T T(mL) 7L
o(u) o(mr) 7(rr)
u Ty, Ty,

But o(u) € u+ 7510y, since o € Gy. Thus 22 € UP*Y and hence

or(ry) _ o(rr) 7(mr)
Tr, Ty, Ty,

mod Uésﬂ).

Hence ¢ is a group homomorphism. Moreover,
ker(p) = {0 € G, | o(rp) = 7 mod 751} = Geyy.
If 7} = amy, is another uniformiser, a € OF. Then

o(ry) _ola) olm) _olm) . s .

!
T, a Tr, Ty,
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Lecture 18

L Corollary 14.3. Gal(L/K) is solvable. j

Proof. By Proposition 13.11, Theorem 14.2 and Theorem 13.4, for s € Z>_ 1,

Gal(kp/k) if s=-1
Gs/Gsy1 = a subgroup ¢ (kf, ) ifs=0
(kL,+) ifs>1

Thus G,/Gs41 is solvable for s > —1. Conclude using Theorem 14.2(ii). O

Let characteristic k = p. Then p {|Go/G1| and |G| = p™. Thus G, is the unique (since normal) Sylow
p-subgroup of Go = I /.

{ Definition 14.4. G; is called the wild inertial group, and Gy/G; is called the tame quotient. J

Suppose L/K is finite separable. Say L/K is tamely ramified if characteristick { ey k. Otherwise it
is wildly ramified.

Theorem 14.5. Assuming that:
. [K 3 Qp] < o0
. L/K finite

e Dk = (wO(L/KD)

Then 6(L/K) > er;x — 1, with equality if and only if tamely ramified. In particular, L/K
unramified if and only if Dy i = Op.

Proof. Example Sheet 3 shows Dy x = Dk, - D,/ Suffices to check 2 cases:

(i) L/K unramified. Then ?? gives that O, = Ok[a], for some « € Of, with kz, = k(a).

Let g(X) € Og[X] be the minimal polynomial of a. Since [L : K] = [k : k], we have that
g(X) € k[X] is the minimal polynomial of @. g(X) separable and hence ¢'(c) #Z 0 (mod ).
Theorem 12.8 implies Dy x = (g(c)) = Of.

(ii) L/K totally ramified. Say [L: K| =e, O = Oklrp], 71 a root of

e—1
g(X) =X+ a; X' € Og[X]
=0
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is Eisenstein. Then

g (mr —67TL +ZWWL
Ze—l = ,
vy >e
Thus v (y' (7)) > e — 1. Equality if and only if p { e. O

Corollary 14.6. Suppose L/K is an extension of number fields. Let P C Oy, PN Ok = p.
Then e(P/p) > 1 if and only if P | Dy /.

Proof. Theorem 12.9 implies Dy, /x = [[p Dr,/k,- Then use e(P/p) = e,/ k, and Theorem 14.5. [

Example. o K = Qp, (n a primitive p™-th root of unity. L = Q,({pn). The p"-th
cyclotomic polynomial is

D, (X) = XPT D) Lo x " T e-2) 4 e Z,[X].
See Example Sheet 3.
o ®,n(X) irreducible (hence ®,-(X) is the minimal polynomial of (,n).
o L/Q, is Galois, totally ramified of degree p"™!(p — 1).
o m:=(pn — 1 a uniformiser in O, ~ Op = Zp[(pn — 1] = Zp[(pn]-

o Gal(L/Qp) = (Z/p"Z)* (abelian). o, ¢+ m where 0y, (Cpn) = (It
vL(om(m) = ™) = vL (G — Gn) = vr(Gr ' = 1)

Let k be maximal such that p* | m — 1. Then Cgffl is a primitive p"~*-th root of unity,
and hence ()" — 1 is a uniformiser 7/ in L’ = Q,((j% ). Hence

- er/o, _ [L:Qp] _ p"'(p—1)
N WP 7 AL ) -
G D e = e, T Q] =D

Theorem 14.2(i) implies that o, € G; if and only if p* > i + 1. Thus

(Z/p"Z)* i<0
G2 (1+p*2)/p"Z pFl-1<i<pF—11<k<i+1).
{1} ptl—1<i
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Part VI

Local Class Field Theory
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15 Infinite Galois Theory

Definition 15.1 (Infinite Galois definitions). o L/K is separable if Yoo € L, the minimal
polynomial f,(X) € K[X] for « is separable.

e L/K is normal if f,(X) splits in L for all « € L.

o L/K is Galois if it is separable and normal. Write Gal(L/K) := Autg (L) in this case. If
L/K is a finite Galois extension, then we have a Galois correspondence:

{subextensions K C K’ C L} < {subgroups of Gal(L/K)}

K' — Gal(K/K'")
N J
Let (I, <) be a poset. Say I is a directed set if for all 4, j € I, there exists k € I such that i <k, j < k.

Example.
o Any total order (for example (N, <)).

e N3, ordered by divisibility.

Definition 15.2. Let (I, <) be a directed set and (G;);cr a collection of groups together with
maps @;; : G; = Gy, © < j such that:

o Yir = @i 0 pji forany i <j <k

Say ((Gi)i=1,®ij;) is an inverse system. The inverse limit of (G;, ¢;) is

li;nGi = {(g:)ier € [[ Gi | 0ij(95) = g:}-

icl
N J
p
Remark.
o (N, <) recovers the previous set.
o There exist projection maps ¢; : imG; — Gj.
—
i€l
e lim GG; satisfies a universal property.
—
el
e Assume G; finite. Then the profinite topology on lim G; is the weakest topology such that
—
i€l
@, are continuous for all j € I.
N J
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Proposition 15.3. Assuming that:
o L/K Galois
Then
(i) The set I = {F/Kfinite | F C L, F Galois} is a directed set under C.

(ii) For F,F’ € I, F C F’ there is a restriction map resp pr : Gal(F’'/K) — Gal(F/K) and
the natural map
Gal(L/K) — lim Gal(F/K)
—

Fel

is an isomorphism.

Proof. Example Sheet 4.
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