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Part I

Basic Theory

Example. f(x1, . . . , xr) ∈ Z[c1, . . . , xr], f(x1, . . . , xr) = 0? This is hard to study. It is easier
to study

f(x1, . . . , xr) ≡ 0 (mod p)

f(x1, . . . , xr) ≡ 0 (mod p2)

...

f(x1, . . . , xr) ≡ 0 (mod pn)

A local field packages all this information together.
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1 Absolute values

Definition 1.1 (Absolute value). Let K be a field. An absolute value on K is a function
| • | : K → R≥0 such that

(i) |x| = 0 if and only if x = 0.

(ii) |xy| = |x||y| for all x, y ∈ K.

(iii) |x+ y| ≤ |x|+ |y| ∀x, y ∈ K (triangly inequality).

We say (K, | • |) is a valued field.

Example.

• K = Q,R,C with usual absolute value |a+ ib| =
√
a2 + b2. Write | • |∞ for this absolute

value.

• K any field. The trivial absolute value is

|x| =

{
0 x = 0

1 x 6= 0

Although this is technically an absolute value, it is not useful or interesting, so should be
ignored.

Definition 1.2 (p-adic absolute value). Let K = Q, and p be a prime. For 0 6= x ∈ Q, write
x = pn ab , where (a, p) = 1, (b, p) = 1. The p-adic absolute value is defined to be

|x|p =

{
0 x = 0

p−n x = pn ab

Verification:

(i) Clear

(ii) Write y = pm c
d . Then

|xy|p =
∣∣∣pm+n ac

bd

∣∣∣
p
= p−m−n = |x|p |y|p .

(iii) Without loss of generality, m ≥ n. Then

|x+ y|p =
∣∣∣∣pn ad+ pm−nbc

bd

∣∣∣∣
p

≤ p−n = max(|x|p , |y|p).
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An absolute value |•| on K induces a metric d(x, y) = |x− y| on K, hence a topology on K.

Definition 1.3 (Place). Let |•|, |•| ′ be absolute values on a field K. We say |•| and |•| ′ are
equivalent if they induce the same topology. An equivalence class of absolute values is called a
place.

Proposition 1.4. Assuming that:

• |•|, |•| ′ are (non-trivial) absolute values on K.

Then the following are equivalent:

(i) |•| and |•| ′ are equivalent.

(ii) |x| < 1 ⇐⇒ |•| ′ < 1 for all x ∈ K.

(iii) There exists c ∈ R>0 such that |x| c = |•| ′ for all x ∈ K.

Proof.

(i) =⇒ (ii)

|x| < 1 ⇐⇒ xn → 0 w.r.t |•|
⇐⇒ xn → 0 w.r.t |•| ′

⇐⇒ |x| ′ < 1

(ii) =⇒ (iii) Note: |x| c = |x| ′ ⇐⇒ c log |x| = log |x| ′. Let a ∈ K× such that |a| > 1 (exists since
|•| is non-trivial). We need that ∀x ∈ K×,

log |x|
log |a|

=
log |x| ′

log |a| ′
.

Assume that
log |x|
log |a|

<
log |x| ′

log |a| ′
.

Choose m,n ∈ Z (with n > 0) such that

log |x|
log |a|

<
m

n
<

log |x| ′

log |a| ′
.

Then we have

n log |x| < m log |a|
n log |x| ′ > m log |a| ′

Hence
∣∣ xn

am

∣∣ < 1 and
∣∣ xn

am

∣∣ > 1, contradiction. Similarly for the case where

log |x|
log |a|

>
log |x| ′

log |a| ′
.
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(iii) =⇒ (i) Clear.

Remark. | • |2∞ on C is not an absolute value by our definition. Some authors replace the
triangle inequality by

|x+ y| β ≤ |x| β + |y| β

for some fixed β ∈ R>0.

Definition 1.5 (Non-archimedean). An absolute value |•| on K is said to be non-archimedean
if it satisfies the ultrametric inequality:

|x+ y| ≤ max(|x| , |y|).

If |•| is not non-archimedean, then it is archimedean.

Example.

• |•|∞ on R is archimedean.

• |•| p is a non-archimedean absolute value.

Lemma 1.6. Assuming that:

• (K, |•|) is non-archimedean

• x, y ∈ K

• |x| < |y|

Then |x− y| = |y|.

Proof.
|x− y| ≤ max(|x| , |y|) = |y|

and
|y| ≤ max(|x| , |x− y|) ≤ |x− y| .

Proposition 1.7. Assuming that:

• (K, |•|) is non-archimedean
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• (xn)
∞
n=1 a sequence in K

• |xn − xn+1| → 0

Then (xn)
∞
n=1 is Cauchy. In particular, if K is in addition complete, then (xn)

∞
n=1 converges.

Proof. For ε > 0, choose N such that |xn − xn+1| < ε for n > N . Then N < n < m,

|xn − xm| = |(xn − xn+1) + · · ·+ (xn−1)− xm)| < ε.

The “In particular” is clear.

Example. p = 5, construct sequence (xn)
∞
n=1 in Z such that

(i) x2n + 1 ≡ 0 (mod 5n)

(ii) xn ≡ xn+1 (mod 5n)

Take x1 = 2. Suppose we have constructed xn. Let x2n + 1 = a5n and set xn+1 = xn + b5n.
Then

x2n+1 + 1 = x2n + 2bxn5
n + b252n + 1

= a5n + 2bxn5
n + b252n

We choose b such that a + 2bxn ≡ 0 (mod 5). Then we have x2n+1 + 1 ≡ 0 (mod 5n+1). Now
(ii) implies that (xn)

∞
n=1 is Cauchy. Suppose xn → l ∈ Q. Then x2n → l2. But (i) tells us that

x2n → −1, so l2 = −1, a contradiction. Thus (Q, |•| 5) is not complete.

Definition 1.8. The p-adic numbers Qp is the completion of Q with respect to |•|p.

Analogy with R:

Lecture 2
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Notation. As is usual when working with metric spaces, we will be using the notation:

B(x, r) = {y ∈ K | |x− y| < r}
B(x, r) = {y ∈ K | |x− y| ≤ r}

Lemma 1.9. Assuming that:

• (K, |•|) is a non-archimedean valued field

Then

(i) If z ∈ B(x, r), then B(z, r) = B(x, r) – so open balls don’t have a centre.

(ii) If z ∈ B(x, r) then B(x, r) = B(z, r).

(iii) B(x, r) is closed.

(iv) B(x, r) is open.

Proof.

(i) Let y ∈ B(x, r). Then |x− y| < r hence

|z − y| = |(z − x) + (x− y)|
≤ max(|z − x|, |x− y|)
< r

Thus B(x, r) ⊆ B(z, r). ⊇ follows by symmetry.

(ii) Same as (i).

(iii) Let y /∈ B(x, r). If z ∈ B(x, r) ∩ B(y, r) then B(x, r) = B(z, r) = B(y, r) Hence y ∈ B(x, r).
Hence B(x, r) ∩B(y, r) = ∅.

(iv) If z ∈ B(x, r), then B(z, r) ⊆ B(z, r) = B(x, r).
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2 Valuation Rings

Definition 2.1 (Valuation). Let K be a field. A valuation on K is a function v : K× → R
such that

(i) v(xy) = v(x) + v(y)

(ii) v(x+ y) ≥ min(v(x), v(y))

Fix 0 < α < 1. If v is a valuation on K, then

|x| =

{
αv(x) x 6= 0

0 x = 0

determines a non-archimedean absolute value on K.

Conversely a non-archimedean absolute value determines a valuation v(x) = logα |x|.

Remark.

• Ignore the trivial valuation v(x) = 0.

• Say v1, v2 are equivalent if there exists c ∈ R> 0 such that v1(x) = cv2(x) for all x ∈ K×.

Example.

• K = Q, vp(x) = − logp |x|p is known as the p-adic valuation.

• If k is a field, consider K = k(t) = Frac(k[t]) the rational function field. Then define

v

(
tn
f(t)

g(t)

)
= n

for f, g ∈ k[t] with f(0), g(0) 6= 0. We call this the t-adic valuation.

• K = k((t)) = Frac(k[[t]]) =
{∑∞

i=n ait
i | ai ∈ k, n ∈ Z

}
, known as the field of formal

Laurent series over k. Then we can define

v

(∑
I

ait
i

)
= min{i | ai 6= 0}

is the t-adic valuation on K.

Definition 2.2. Let (K, |•|) be a non-archimedean valued field. The valuation ring of K is
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defined to be

OK = {x ∈ K | |x| ≤ 1}(= B(0, 1))

( = {x ∈ K× | v(x) ≥ 0} ∪ {0})

Proposition 2.3.

(i) OK is an open subring of K

(ii) The subsets {x ∈ K | |x| ≤ r} and {x ∈ K | |x| < r} for r ≤ 1 are open ideals in OK .

(iii) O×K = {x ∈ K | |x| = 1}.

Proof.

(i) |0| = 0, |1| = 1 so 0, 1 ∈ OK . If x ∈ OK , then |−x| = |x| hence −x ∈ OK . If x, y ∈ OK , then

|x+ y| ≤ max(|x| , |y|) ≤ 1.

Hence x + y ∈ OK . If x, y ∈ OK , then |xy| = |x| |y| ≤ 1, hence xy ∈ OK . Thus OK is a ring.
Since OK = B(0, 1), it is open.

(ii) Similar to (i).

(iii) Note that |x|
∣∣x−1∣∣ = ∣∣xx−1∣∣ = 1. Thus

|x| = 1 ⇐⇒
∣∣x−1∣∣ = 1

⇐⇒ x, x−1 ∈ OK

⇐⇒ x ∈ O×K

Notation.

• m := {x ∈ OK | |x| < 1} is a max ideal of OK .

• k := OK/m is the residue field.

Corollary 2.4. OK is a local ring with unique maximal ideal m (a local ring is a ring with a
unique maximal ideal).

Proof. Let m′ be a maximal ideal. Suppose m′ 6= m. Then there exists x ∈ m′ \m. Using part (iii) of
Proposition 2.3, we get that x is a unit, hence m′ = OK , a contradiction.
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Example. K = Q with |•|p. Then

OK = Z(p) =

{
a

b
∈ Q

∣∣∣∣∣p - b
}
,

and m = pZ(p), k = Fp.

Definition 2.5. Let v : K× → R be a valuation. If v(K×) ∼= Z, we say v is a discrete valuation.
K is said to be a discretely valued field. An element π ∈ OK is uniformiser if v(π) > 0 and
v(π) generates v(K×).

Example. • K = Q with p-adic valuation is a discrete valuation ring.

• K = k(t) with t-adic valuation is a discrete valuation ring.

• K = k(t)(t1/2, t1/4, t1/8, . . .). Here, the t-adic valuation is not discrete.

Remark. If v is a discrete valuation, can replace with equivalent one such that v(K×) = Z>
Call such a v normalised valuations (then v(π) = 1 if and only if π is a unit).

Lemma 2.6. Assuming that:

• v is a valuation on K

Then the following are equivalent:

(i) v is discrete

(ii) OK is a PID

(iii) OK is Noetherian

(iv) m is principal

Proof.

(i) =⇒ (ii) OK is an integral domain since it is a subset of K, which is an integral domain.
Let I ⊆ OK be a non-zero ideal. Let x ∈ I such that v(x) = min{v(a) | a ∈ I},
which exists since v is discrete. Then we claim

xOK = {a ∈ OK | v(a) ≥ v(x)}

is equal to I.
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⊆ (I is an ideal)
⊇ Let y ∈ I. Then v(x−1y) ≥ 0. Hence y = x(x−1y) ∈ xOK .

(ii) =⇒ (iii) Clear.

(iii) =⇒ (iv) Write m = x1OK + · · ·+ xnOK . Without loss of generality,

v(x1) ≤ v(x2) ≤ · · · ≤ v(xn).

Then x2, . . . , xn ∈ x1OK . Hence m = x1OK .

(iv) =⇒ (i) Let m = πOK for some π ∈ OK and let c = v(π). Then if v(x) > 0, x ∈ m
hence v(x) ≥ c. Thus v(K×) ∩ (0, c) = ∅. Since v(K×) is a subgroup of (R,+),
we deduce v(K×) = Z.

Lecture 3
Suppose v is a discrete valuation on K, π ∈ OK a uniformiser. For x ∈ K×, let n ∈ Z such
that v(x) = nv(π). Then u = π−nx ∈ O×K and x = uπn. In particular, K = OK

[
1
π

]
and hence

K = Frac(OK).

Definition 2.7 (Discrete valuation ring). A ring R is called a discrete valuation ring (DVR) if
it is a PID with exactly one non-zero prime ideal (necessarily maximal).

Lemma 2.8.

(i) Let v be a discrete valuation on K. Then OK is a discrete valuation ring.

(ii) Let R be a discrete valuation ring. Then there exists a valuation on K := Frac(R) such
that R = OK .

Proof.

(i) OK is a PID by Lemma 2.6. Hence any non-zero prime ideal is maximal and hence OK is a
discrete valuation ring since it is a local ring.

(ii) Let R be a discrete valuation ring, with maximal ideal m. Then m = (π) for some π ∈ R. Since
PIDs are UFDs, we may write any x ∈ R \ {0} uniquely as πnu with n ≥ 0, u ∈ R×. Then any
y ∈ K× can be written uniquely as πmu with u ∈ R×, m ∈ Z. Define v(πmu) = m; check v is a
valuation and OK = R.

Example. Z(p), k[[t]] (k a field) are discrete valuation rings.
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3 The p-adic numbers

Recall that Qp is the completion of Q with respect to |•|p. On Example Sheet 1, we will show that Qp
is a field. We also show that |•|p extends to Qp and the associated valuation is discrete.

Definition 3.1. The ring of p-adic integers Zp is the valuation ring

Zp = {x ∈ Qp | |x|p ≤ 1}.

Facts: Zp is a discrete valuation ring, with maximal ideal pZp, and non-zero ideals are given by pnZp.

Proposition. Zp is the closure of Z inside Qp. In particular, Zp is the completion of Z with
respect to |•|p.

Proof. Need to show Z is dense in Zp. Note Q is dense in Qp. Since Zp ⊆ Qp is open, we have that
Zp ∩Q is dense in Zp. Now:

Zp ∩Q = {x ∈ Q | |x|p ≤ 1} =

{
a

b
∈ Q

∣∣∣∣∣p - b
}

= Z(p).

Thus it suffices to show Z is dense in Z(p).

Let a
b ∈ Z(p), a, b ∈ Z, p - b. For n ∈ N, choose yn ∈ Z such that byn ≡ a (mod pn). THen yn → a

b as
n→ ∞.

In particular, Zp is complete and Z ⊆ Zp is dense.

Definition (Inverse limit). Let (An)
∞
n=1 be a sequence of sets / groups / rings together with

homomorphisms ϕn : An+1 → An (transition maps). Then the inverse limit of (An)∞n=1 is the
set / group / ring defined by

lim
←−
n

An =

{
(an)

∞
n=1 ∈

∞∏
n=1

An

∣∣∣∣∣ϕ(an+1) = an ∀n

}
.

Define the group / ring operation componentwise.

Notation. Let θm : lim
←−
n

An → Am denote the natural projection.

The inverse limit satisfies the following universal property:
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Proposition 3.2 (Universal property of inverse limits). Assuming that:

• B is a set / group / ring

• ψn are homomorphisms ψn : B → An such that

B An+1

An

ψn+1

ψn
ϕn

commutes for all n

Then there exists a unique homomorphism ψ : B → lim
←−
n

An such that θn ◦ ψ = ψn.

Proof. Define

ψ : B →
∞∏
n=1

An

b 7→
∞∏
n=1

ψn(b)

Then ψn = ϕn◦ψn+1 implies that ψ(b) ∈ lim
←−
n

An. The map is clearly unique (determined by ψn = θn◦ψ)

and is a homomorphism of sets / groups / rings.

Definition 3.3 (I-adic completion). Let I ⊆ R be an ideal (R a ring). The I-adic completion
of R is the

R̂ := lim
←−
R

/In

where R/In+1 → R/In is the natural projection.

Note that there exists a natural map i : R→ R̂ by the Universal property of inverse limits (there exist
maps R→ R/In). We say R is I-adically complete if it is an isomorphism.

Fact: ker(i : R→ R̂) =
⋂∞
n=1 I

n.

Let (K, |•|) be a non-archimedean valued fieldand π ∈ OK such that |π| < 1.

Proposition 3.4. Assuming that:

• K is complete with respect to | • |

Then

14



(i) Then OK
∼= lim
←−
n

OK/π
nOK (OK is π-adically complete)

(ii) Every x ∈ OK can be written uniquely as x =
∑n
i=0 aiπ

i, ai ∈ A, where A ⊆ OK is a set
of coset representatives for OK/πOK .

Proof.

(i) K is complete and OK is closed, so OK is complete.
x ∈

⋂∞
n=1 π

nOK impies v(x) ≥ nv(π) for all n, and hence x = 0. Hence OK → lim
←−
O

K/π
nOK is

injective.
Let (xn)

∞
n=1 ∈ lim

←−
O

K/π
nOK and for each n, let yn ∈ OK be a lifting of xn ∈ OK/π

nOK . Then

yn − yn+1 ∈ πnOK so that v(yn − yn+1) ≥ nv(π).
Thus (yn)

∞
n=1 is a Cauchy sequence in OK . Let yn → y ∈ OK . Then y maps to (xn)

∞
n=1 in the

lim
←−
n

OK/π
nOK . Thus OK → lim

←−
n

OK/π
nOK is surjective.

(ii) Exercise on Example Sheet 1.

Corollary 3.5.

(i) Zp ∼= lim
←−
Z

/pnZ.

(ii) Every element x ∈ Qp can be written uniquely as

x =

∞∑
i=n

aip
i,

with n ∈ Z, ai ∈ {0, 1, . . . ,−1}.
Lecture 4

Proof.

(i) It suffices by Proposition 3.4 to show that

Zp/pnZp ∼= Z/pnZ.

Let fn : Z → Zp/pnZp be the natural map

ker(fn) = {x ∈ Z | |x|p ≤ p−n} = pnZ,

hence Z/pnZ → Zp/pnZp is injective.
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Let τ ∈ Zp/pnZp and let c ∈ Zp be a lift. Since Z is dense in Zp, there exists x ∈ Z such that
x ∈ c+ pnZp is open in Zp. Then fn(x) = τ , hence Z/pnZ → Zp/pnZp is surjective.

(ii) It follows from Proposition 3.4(ii) to p−nx ∈ Zp for some n ∈ Z

Example.
1

1− p
= 1 + p+ p2 + p3 + · · ·
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Part II

Complete Valued Fields
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4 Hensel’s Lemma

Theorem 4.1 (Hensel’s Lemma version 1). Assuming that:

• (K, |•|) is a complete discretely valued field

• f(X) ∈ OK [X]

• assume ∃a ∈ OK such that |f(a)| < |f ′(a)|2

Then there exists a unique x ∈ OK such that f(x) = 0 and |x− a| < |f ′(a)|.

Proof. Let π ∈ OK be a uniformiser and let r = v(f ′(a)), with v the normalised valuation (v(π) = 1).
We construct a sequence (xn)

∞
n=1 in OK such that:

(i) f(xn) ≡ 0 (mod πn+2r)

(ii) xn+1 ≡ xn (mod πn+r)

Take x1 = a: then f(x1) ≡ 0 (mod π1 + 2r).

Now we suppose we have constructed x1, . . . , xn satisfying (i) and (ii). Define

xn+1 = xn − f(xn)

f ′(xn)
.

Since xn ≡ x1 (mod πr+1), we have

v(f ′(xn)) = v(f ′(xi)) = r,

and hence
f(xn)

f ′(xn)
≡ 0 (mod πn+r)

by (i).

It follows that xn+1 ≡ xn (mod πn+r), so (ii) holds. Note that letting X,Y be indeterminates, we
have

f(X + Y ) = f0(X) + f1(X)Y + f2(X)Y 2 + · · · ,

where fi(X) ∈ OK [X] and f0(X) = f(X), f1(X) = f ′(X). Thus

f(xn+1) = f(xn) + cf ′(xn) + c2f2(xN ) + c2f2(xn) + · · ·︸ ︷︷ ︸
∈πn+2r+1

where c = − f(xn)
f ′(xn)

.
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Since c ≡ 0 (mod πn+r) and v(fi(xn)) ≥ 0 we have

f(xn+1) ≡ f(xn) + f ′(xn)c ≡ 0 (mod πn+2r+1),

so (i) holds.

Property (ii) implies that (xn)
∞
n=1 is Cauchy, so let x ∈ OK such that xn → x. Then f(x) =

limn→∞ f(xn) = 0 by (i).

Moreover, (ii) impies that

a = x1 ≡ xn (mod πr+1) ∀n
=⇒ a ≡ x (mod πr+1)

=⇒ |x− a| < |f ′(a)|

This proves existence.

Uniqueness: suppose x′ also satisfies f ′(x) = 0, |x′ − a| < |f ′(a)|. Set δ = x′ − x 6= 0. Then

|x′ − a| < |f ′(a)| |x− a′| < |f ′(a)|,

and the ultrametric inequality implies

|δ| = |x− x′| < |f ′(a)| = |f ′(x)|.

But
0 = f(x′) = f(x+ δ) = f(x)︸︷︷︸

=0

+f ′(x)δ + · · ·︸︷︷︸
|•|≤|δ|2

.

Hence |f ′(x)δ| ≤ |δ|2, so |f ′(x)| < |δ|, a contradiction.

Corollary 4.2. Let (K, |•|) be a complete discretely valued field. Let f(X) ∈ OK [X] and
c ∈ k := OK/m a simple root of f(X) := f(X) (mod m) ∈ k[X]. Then there exists a unique
x ∈ OK such that f(x) = 0, x ≡ c (mod m).

Proof. Apply Theorem 4.1 to a lift c ∈ OK of c. Then |f(c)| < 1 = |f ′(c)|2 since c is a simple root.

Example. f(X) = X2 − 2 has a simple root modulo 7. Thus
√
2 ∈ Z7 ⊆ Q7.

Corollary 4.3.

Qp×/(Qp×)2 ∼=

{
(Z/2Z)2 if p > 2

(Z/2Z)3 if p = 2

19



Proof. Case p > 2: Let b ∈ Zp×. Applying to f(X) = X2 − b, we find that b ∈ (Zp×)2 if and only if
b ∈ (F×p )2. Thus Zp×/(Zp×)2 ∼= F×p /(F×p )2 ∼= Z/2Z (F×p ∼= Z/(p− 1)Z).

We have an isomorphism
Zp× × (Z,+) ∼= Qp×

given by (u, n) 7→ upn. Thus
Qp×/(Qp×)2 ∼= (Z/2Z)2.

Case p = 2: Let b ∈ Z×2 . Consider f(X) = X2 − b. Note f ′(X) = 2X ≡ 0 (mod 2). Let b ≡ 1
(mod 8). Then

|f(1)| = 2−3 < 2−2 = |f ′(1)|2.
Hensel’s Lemma version 1 gives

b ∈ (Z×2 )
2 ⇐⇒ b ≡ 1 (mod 8).

Then
Z×2 /(Z

×
2 )

2 ∼= (Z/8Z)× ≡ (Z/2Z)j .
Again using Q×2 ≡ Z×2 × Z, we find that Q×2 ∼= (Z/2Z)3.

Remark. Proof uses the iteration

xn+1 = xn − f(xn)

f ′(xn)
,

which is the non-archimedean analogue of the unewton Raphson method.

Theorem 4.4 (Hensel’s Lemma version 2). Assuming that:

• (K, | • |) is a complete discretely valued field

• f(X) ∈ OK [X]
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• f(X) := f(X) (mod m) ∈ k[X] factorises as f(X) = g(X)h(X) in k[X]

• g(X) and h(X) coprime.

Then there is a factorisation
f(X) = g(X)h(X)

in OK [X], with g(X) ≡ g(X) (mod m), h(X) ≡ h(X) (mod m) and deg g = deg g.

Proof. Example Sheet 1.

Lecture 5

Corollary 4.5. Let (K, |•|) be a complete discretely valued field. Let

f(X) = anX
n + · · ·+ an ∈ K[X]

with a0, an 6= 0. If f(X) is irreducible, then |ai| ≤ max(|a0|, |an|) for all i.

Proof. Upon scaling, we may assume f(X) ∈ OK [X] with maxi(|ai|) = 1. Thus we need to show that
max(|a0|, |an|) = 1. If not, let r minimal such that |ar| = 1, then 0 < r < n. Thus we have

f(X) = Xr(ar + · · ·+ anX
n−r) (mod m).

Then Theorem 4.4 implies f(X) = g(X)h(X) with 0 < deg < n.
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5 Teichmüller lifts

Definition 5.1 (Perfect). A ring R of characteristic p > 0 (prime) is a perfect ring if the
Frobenius x 7→ xp is a bijection. A field of characteristic p is a perfect field if it is perfect as a
ring.

Remark. Since characteristicR = p, (x+y)p = xp+yp, so Frobenius is a ring homomorphism.

Example.

(i) Fpn and Fp are perfect fields.

(ii) Fp[t] is not perfect, because t /∈ Im(Frob).

(iii) Fp(t
1

p∞ ) := Fp(t, t
1
p , t

1
p2 , . . .) is a perfect field (called the perfection of Fp(t)).

Fact: A field of characteristic p > 0 is perfect if and only if any finite extension of k is separable.

Theorem 5.2. Assuming that:

• (K, |•|) is a complete discretely valued field

• such that k := OK/m is a perfect field of characterist p

Then there exists a unique map [•] : k → OK such that

(i) a ≡ [a] mod m for all a ∈ k

(ii) [ab] = [a][b] for all a, b ∈ k

Moreover if characteristicOK = p, then [•] is a ring homomorphism.

Definition 5.3. The element [a] ∈ OK constructed in Theorem 5.2 is the Teichmüller lift of a.

Lemma 5.4. Assuming that:

• (K, |•|) is a complete discretely valued field

• such that k := OK/m is a perfect field of characterist p

• π ∈ OK a fixed uniformiser

• x, y ∈ OK such that x ≡ y mod πk (k ≥ 1)
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Then xp ≡ yp mod πk+1.

Proof. Let x = y + uπk with u ∈ OK . Then

xp =

p∑
i=0

(
p

i

)
yp−i(uπk)i

= yp +

p∑
i=1

(
p

i

)
yp−1(uπk)i

Since OK/πOK has characteristic p, we have p ∈ πOK . Thus(
p

i

)
(uπk)iyp−i ∈ πk+1OK ∀i ≥ 1,

hence xp ≡ yp mod πk+1.

Proof of Theorem 5.2. Let a ∈ k. For each i ≥ 0 we choose a lift yi ∈ OK of a
1

pi , and we define

xi := ypii .

We claim that (xi)
∞
i=1 is a Cauchy sequence and its limit is independent of the choice of yi.

By construction, yi ≡ ypi+1 mod π. By Lemma 5.4 and induction on k, we have yp
k

i ≡ yp
k+1

i+1 and hence
xi ≡ xi+1 mod πi+1 (take i = p). Hence (xi)

∞
i=1 is Cauchy, so xi → x ∈ OK .

Suppose (x′i)∞i=1 arises from another choice of y′i lifting a
1

pi

i . Then (x′i)
∞
i=1 is Cauchy, and x′i → x′ ∈ OK .

Let

x′′i =

{
xi i even
x′i i odd

.

Then x′′i arises from lifting

y′′i =

{
yi i even
yi i odd

.

Then x′′i is Cauchy and x′′i → x, x′′i → x′. So x = x′ and hence x is independet of the choice of yi. So
we may define [a] = x.

Then xi = yp
i

i ≡ (a
1

pi )p
i ≡ a mod π. Hence x ≡ a mod π. So (i) is satisfied.

We let b ∈ k and we choose ui ∈ OK a lift of b
1

pi , and let zi := up
i

i t. Then limi→∞ zi = [b].

Now uiyi is a lift of (ab)
1

pi , hence

[ab] = lim
i→∞

xizi = ( lim
i→∞

xi)( lim
i→∞

zi) = [a][b].

23



So (ii) is satisfied.

If characteristicK = p, yi + ui is a lift of a
1

pi + b
1

pi = (a+ b)
1

pi . Then

[a+ b] = lim
i→∞

(yi + ui)
pi

= lim
i→∞

yp
i

i + up
i

i

= lim
i→∞

xi + zi

= [a] + [b]

Easy to check that [0] = 0, [1] = 1, and hence [•] is a ring homomorphism.

Uniqueness: let φ : k → OK be another such map. Then for a ∈ k, φ(a
1

pi ) is a lift of a
1

pi . It follows
that

[a] = lim
i→∞

φ(a
1

pi )p
i

= lim
i→∞

φ(a)

= φ(a)

Example. K = Qp, [•] : Fp → Zp, a ∈ F×p , [a]p−1 = [ap−1] = [1] = 1. So [a] is a (p− 1)-th root
of unity.

Lemma 5.5. Assuming that:

• (K, |•|) complete discretely valued field

• k = OK/m ⊆ Fp

• a ∈ k×

Then [a] is a root of unity.

Proof.

a ∈ k× =⇒ a ∈ F×pn for some n

=⇒ [a]p
n−1 = [ap

n−1] = [1] = 1

Theorem 5.6. Assuming that:

• (K, |•|) complete discretely valued field

• characteristic(K) = p > 0
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• k is perfect

Then K = k((t)) (k = OK/m).

Proof. Since K = Frac(OK), it suffices to show OK
∼= k[[t]. Fix π ∈ OK a uniformiser, and let

[•] : k → OK be the Teichmüller map and define

ϕ : k[[t]] → OK

ϕ

( ∞∑
i=0

ait
i

)
=

∞∑
i=0

[ai]π
i

Then ϕ is a ring homomorphism since [•] is, and it is a bijection by Proposition 3.4(ii).

Lecture 6
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6 Extensions of complete valued fields

Theorem 6.1. Assuming that:

• (K, |•|) is a complete discretely valued field

• L/K a finite extension of degree n

Then

(i) |•| extends uniquely to an absolute value |•| L on L defined by

|y| L =
∣∣NL/L(y)∣∣ 1

n ∀y ∈ L.

(ii) L is complete with respect to |•| L.

Recall: If L/K is finite, NL/K : L→ K is defined by NL/K(y) = detK(mult(y) where mult(y) : L→ L
is the K-linear map induced by multiplication by y.

Facts:

• NL/K is multiplicative.

• Let Xn+an−1X
n−1+· · ·+a0 ∈ K[X] be the minimal polynomial of y ∈ L. Then NL/K(y) = ±am0

for some m ≥ 1 (in fact, m is the degree of L/K[y]).

• NL/K(y) = 0 ⇐⇒ y = 0.

Definition 6.2 (Norm). Let (K, |•|) be a non-archimedean valued field, V a vector space over
K. A normon V is a function ‖ • ‖ : V → R≥0 satisfying:

(i) ‖x‖ = 0 ⇐⇒ x = 0.

(ii) ‖λx‖ = ‖λ‖‖x‖ for all λ ∈ K, x ∈ V .

(iii) ‖x+ y‖ ≤ max(‖x‖, ‖y‖) for all x, y ∈ V .

Example. If V is finite dimensional and e1, . . . , en is a basis of V . The supremum ‖ • ‖sup on
V is defined by

‖x‖sup = max
i

|xi|,

where x =
∑n
i=1 xiei.

Exercise: ‖ • ‖sup is a norm.

26



Definition 6.3 (Equivalent norms). Two norms ‖ • ‖1 and ‖ • ‖2 on V are equivalent if there
exists C,D ∈ R>0 such that

C‖x‖1 ≤ ‖x‖2 ≤ D‖x‖1 ∀x ∈ V.

Fact: A norm defines a topology on V , and equivalent norms induce the same topology.

Proposition 6.4. Assuming that:

• (K, |•|) is a complete non-archimedean valued field

• V a finite dimensional vector space over K

Then V is complete with respect to ‖ • ‖sup.

Proof. Let (vi)
∞
i=1 be a Cauchy sequence in V , and let e1, . . . , en be a basis for V .

Write vi =
∑n
j=1 x

i
jej . Then (xij)

∞
i=1 is a Cauchy sequence in K. Let xij → xj ∈ K, then vi → v :=∑n

j=1 xjej .

Theorem 6.5. Assuming that:

• (K, |•|) is a complete non-archimedean valued field

• V a finite dimensional vector space over K

Then any two norms on K are equivalent. In particular, V is complete with respect to any
norm (using Proposition 6.4).

Proof. Since equivalence defines an equivalence relation on the set of norms, it suffices to show that
any norm ‖ • ‖ is equivalent to ‖ • ‖sup.

Let e1, . . . , en be a basis for V , and set D := maxi ‖ei‖ > 0. Then for x =
∑n
i=1 xiei, we have

‖x‖ ≤ max
i

‖xiei‖ = max
i

|xi| ‖ei‖ ≤ Dmax
i

|xi| = D‖x‖sup.

To find C such that C‖ • ‖sup ≤ ‖ • ‖, we induct on n = dimV .

For n = 1: ‖x‖ = ‖x1e1‖ = |x1| ‖e1‖, so take C = ‖e1‖.

For n > 1: set Vi = span〈e1, . . . , ei−1, ei+1, . . . , en〉. By induction, Vi is complete with respect to ‖ • ‖,
hence closed.
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Then ei + Vi is closed for all i, and hence

S :=

n⋃
i=1

ei + Vi

is a closed subset not containing 0. Thus there exists c > 0 such that B(0, C) ∩ S = ∅ where
B(0, C) = {x ∈ V | ‖x‖ < C}.

Let 0 6= x =
∑n
i=1 xiei and suppose |xj | = maxi |xi|. Then ‖x‖sup = |xj |, and 1

xj
∈ S. Thus

∥∥∥ xi

xj

∥∥∥ ≥ C,
and hence

‖x‖ ≥ C |xj | = C‖x‖sup.

V is complete since it is complete with respect to ‖ • ‖sup (see Proposition 6.4).

Definition 6.6 (Integral closure). Let R be a subring of S. We say s ∈ S is integral over R if
there exists a monic polynomial f(X) ∈ R[X] such that f(s) = 0.
The integral closure Rint(S) of R inside S is defined to be

Rint(S) = {s ∈ S | s integral over R}.

We say R is integrally closed in S if Rint(S) = R.

Proposition 6.7. Rint(S) is a subring of S. Moreover, Rint(S) is integrally closed in S.

Proof. Example Sheet 2.

Lemma 6.8. Assuming that:

• (K, |•|) is non-archimedean valued field

Then OK is integrally closed in K.

Proof. Let x ∈ K be integral over OK . Without loss of generality, x 6= 0. Let f(X) = Xn +
an−1X

n−1 + · · ·+ a0 ∈ OK [X] such that f(x) = 0. Then

x = −an−1
1

x
− · · · − a0

1

xn−1
.

If |x| > 1, we have
∣∣∣−an−1 1

x − · · · − a0
1

xn−1

∣∣∣ < 1. Thus |x| ≤ 1 =⇒ x ∈ OK .

Lemma 6.9. OL is the integral closure of OK inside L.
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Proof. Let 0 6= y ∈ L and let

f(X) = Xd + ad−1X
d−1 + · · ·+ a0 ∈ K[X]

be the minimal (monic) polynomial of y.

Claim: y integral over OK if and only if f(X) ∈ QK [X].

⇒ Clear.

⇐ Let g(X) ∈ OK [X] monic such that g(y) = 0. Then f | g (in K[X]), and hence every root of f is a
root of g. So every root of f in K is integral over OK , so ai are integral over OK for i = 0, . . . , d−1.

Hence ai ∈ Ok (by Lemma 6.8). By Corollary 4.5, |ai| ≤ max(|a0|, 1) for i = 0, . . . , d− 1. By property
of NL/K , we have NL/K(y) = ±am0 for m ≥ 1.

Hence

y ∈ OL ⇐⇒ |NL/K(y)| ≤ 1

⇐⇒ |a0| ≤ 1

Corollary 4.5⇐⇒ |ai| ≤ 1 ∀i, i.e. ai ∈ OK

Thus OK
int(L) = OL and proves the Lemma.

Proof of Theorem 6.1. We first show |•| L =
∣∣NL/K(•)

∣∣ 1
n satisfies the three axioms in the definition of

absolute value.

(i) |y| L = 0 ⇐⇒
∣∣NL/K(y)

∣∣ 1
n = 0

⇐⇒ NL/K(y) = 0

⇐⇒ y = 0

(ii) |y1y2| L =
∣∣NL/K(y1, y2)

∣∣ 1
n

=
∣∣NL/K(y1)NL/K(y2)

∣∣ 1
n

=
∣∣NL/K(y1)

∣∣ 1
n

∣∣NL/K(y2)
∣∣ 1

n

= |y1| L |y2| L

(iii) Set OL = {y ∈ L | |y| L ≤ 1}.
Claim: OL is the integral closure of OK inside L.
Assuming this, we prove (iii). Let x, y ∈ L, and without loss of generality assume |x| L ≤ |y| L.
Then

∣∣∣xy ∣∣∣
L

hence x
y ∈ OL. Since 1 ∈ OL and OLis a ring, we have 1 + x

y ∈ OL and hence∣∣∣1 + x
y

∣∣∣
L
≤ 1. Hence |x+ y| L ≤ |y| L = max(|x| L, |y| L) thus (iii) is satisfied.
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Lecture 7
So we have proved that | • |L is an absolute value on L.

Since NL/K(x) = xn for x ∈ K, |x|L extends | • | on K.

If |•| ′L is another absolute value on L extending |•|, then | • |L, | • |′L are norms on L.

Theorem 6.5 tells us that | • |′L, | • |L induce the same topology on L. Hence | • |′L = | • |cL for some
c > 0 (by Proposition 1.4) since | • |′L extends | • |, we have c = 1.

Now we show that L is complete with respect to | • |L: this is immediate by Theorem 6.5.

Let (K, | • |) be a complete discretely valued field.

Corollary 6.10. Let L/K be a finite extension. Then

(i) L is discretely valued with respect to | • |L.

(ii) OL is the integral closure of OK in L.

Proof.

(i) v a valuation on K, vL valuation on L such that vL extends v. Let n = [L : K], and let
y ∈ L×. Then |y|L = |NL/K(y)| 1

n hence vL(y) = 1
nv(NL/K(y)), hence vL(L×) ≤ 1

nv(K
×), so vL

is discrete.

(ii) Lemma 6.9.

Corollary 6.11. Let K/K be an algebraic closure of K. Then |• | extends to a unique absolute
value | • |K on K.

Proof. Let x ∈ K, then x ∈ L for some L/K finite. Define |x|K = |x|L. Well-defined, i.e. independent
of L by the uniqueness in Theorem 6.1.

The axioms for | • |K to be an absolute value can be checked over finite extensions.

Uniqueness: clear.
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Remark. | • |K on K is never discrete. For example K = Qp, n
√
p ∈ Qp for all n ∈ Z>0. Then

vp( n
√
p) =

1

n
v(p) =

1

n
.

Qp is not complete with respect to | • |Qp
.

Example Sheet 2: Cp := completion of Qp with respect to | • |Qp
, then Cp is algebraically closed.

Proposition 6.12. Assuming that:

• L/K finite extension of complete discretely valued fields.

• (i): OK is compact.

• (ii): The extension of residue fields kL/k is finite and separable.

Then there exists α ∈ OL such that OL = OK [α].

Later we’ll prove that the (i) implies (ii).

Proof. We’ll choose α ∈ OL such that:

• there exists β ∈ OL[α] a uniformiser for OL

• OK [α] → kL surjective

kL/k separable tells us that there exists α ∈ kL such that kL = k(α).

Let α ∈ OL a lift of α, and g(X) ∈ OK [X] a monic lift of the minimal polynomial of α.

Fix πL ∈ OL a uniformiser. Then g(X) ∈ k[X] irreducible and separable, hence g(α) ≡ 0 mod πL and
g′(α) 6≡ 0 mod πL.

If g(α) ≡ 0 mod π2
L, then

g(α+ πL) ≡ g(α) + πLg
′(α) mod π2

L.

Thus
vL(g(α+ πL)) = vL(πLg

′(α)) = vL(πL) = 1.

(vL normalised valuation on L).

Thus either vL(g(α)) = 1 or vL(g(α+πL)) = 1. Upon possibly replacing α by α+πL, we may assume
vL(g(α)) = 1.
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Set β = g(α) ∈ OK [α] a uniformiser. Then OK [α] ⊆ L is the image of a continuous map:

On
K → L

(x0, . . . , xn−1) 7→
n∑
i=0

xia
i

where n = [K(α) : K]. Since OK is compact, OK [α] ⊆ L is compact, hence closed. Since kL = k(α),
OK [α] contians a set of coset representatives for kL = OL/βOL.

Let y ∈ OL. Then Proposition 3.4 gives us

y =

∞∑
i=0

λiβ
i, λi ∈ OK [α]

Then ym =
∑m
i=0 λiβ

i ∈ OK [α]. Hence y ∈ OK [α], since Ok[α] is closed.
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Part III

Local Fields
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7 Local Fields

Definition 7.1 (Local field). Let (K, |•|) be a valued field. Then K is a local field if it is
complete and locally compact.

Reminder: locally compact means for all x ∈ K, there exists U open and V compact such that
x ∈ U ⊆ V .

Example. R and C are compact.

Proposition 7.2. Assuming that:

• (K, |•|) is a non-archimedean complete valued field

Then the following are equivalent:

(i) K is locally compact

(ii) OK is compact

(iii) v is discrete and k = OK/m is finite.
Lecture 8

Proof.

(i) =⇒ (ii) Let U 3 0 be a compact neighbourhood of 0 (0 ∈ U ⊆ Z with U open, Z compact).
Then there exists x ∈ OK such that xOK ⊆ U . Since xOK is closed, xOK is
compact. Hence OK is compact (xOK

·x−1

→ OK is a homeomorphism).

(ii) =⇒ (i) OK compact implies a+OK is compact for all a ∈ K. So K is locally compact.

(ii) =⇒ (iii) Let x ∈ m, and Ax ⊆ OK be a set of coset representatives for OK/xOK . Then
OK =

⋃
y∈A y + xOK is a disjoint open cover. So Ax is finite by compactness of

OK . So OK/xOK is finite, hence OK/mOK is finite.o
Suppose v is not discrete. Then let x1, x2, . . . such that

v(x1) > v(x2) > · · · > 0.

Then xOK ( x2OK ( x3OK ( · · · ( OK . But OK/xOK is finite so can only have
finitely many subgroups, contradiction.

(iii) =⇒ (ii) Since OK is a metric space, it suffices to prove OK is sequentially compact.
Let (xn)∞n=1 be a sequence in OK , and fix π ∈ OK a uniformiser. Since πiOK/π

i+1OK
∼=

k, OK/π
iOK is finite for all i (OK ⊇ πOK ⊇ · · · ⊇ πiOK). Since OK/πOK is finite,
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there exists a1 ∈ OK/πOK and a subsequence (xn)
∞
n=1 such that x1n ≡ a mod π

for all n.
Since OK/π

2OK is finite, there exists a2 ∈ OK/π
2OK and a subsequence (x2n)

∞
n=1

of (x1n)∞n=1 such that x2n ≡ a2 (mod π)2OK . Continuing, this, we obtain sequences
(xin)

∞
n=1 for i = 1, 2, . . . such that

(1) (x(i+1)n)
∞
n=1 is a subsequence of (xin)∞n=1

(2) For any i, there exists ai ∈ OK/π
iOK such that xin ≡ ai mod πi for all n.

Then necessarily ai ≡ ai+1 mod πi for all i.
Now choose yi = xii. This defines a subsequence of (xn)∞n=1. Moreover, yi ≡ ai ≡
ai+1 ≡ yi+1 mod πi. Thus yi is Cauchy, hence converges by completeness.

Example.

(i) Qp is a local field.

(ii) Fp((t)) is a local field.

More on inverse limits.

Let (An)n=1 a sequence of sets / groups / rings and ϕn : An+1 → An homeomorphisms.

Definition 7.3 (Profinite topology). Assume An is finite. The profinite topology on A := lim
←−
n

An

is the weakest topology on A such that θn : A→ An is continuous for all n, where An is equipped
with the discrete topology.

Fact: A = lim
←−
n

An with the profinite topology is compact, totally disconnected and Hausdorff.

Proposition 7.4. Assuming that:

• K is a non-archimedean local field

Then under the isomorphism OK
∼= lim
←−
n

OK/π
nOK (π ∈ OK a uniformiser), the topology on

OK coincides with the profinite topology.

Proof. One checks that the sets

B := {a+ πnOK | n ∈ N≥1, a ∈ OK}

is a basis of open sets in both topologies.

For |•|: clear.

For profinite topology: OK/OK/π
nOK is continuous if and only if a+πnOK is open for all a ∈ OK .
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Goal: Classify all local fields.

Lemma 7.5. Assuming that:

• K is a non-archimedean local field

• L/K a finite extension

Then L is a local field.

Proof. Theorem 6.1 implies that L is complete and discretely valued. Suffices to show kL := OL/mL

is finite. Let α1, . . . , αn be a basis for L as a K vector space.

‖ • ‖sup (sup norm) equivalent to | • |L implies that there exists r > 0 such that

OL ⊆ {x ∈ L : ‖x‖sup ≤ r}.

Take a ∈ K such that |a| ≥ r, then

OL ⊆
n⊕
i=1

aαiOK ≤ L.

Then OL is finitely generated as a module over OK , hence kL is finitely generated over k.

Definition 7.6 (Equal characteristic). A non-archimedean valued field (K, |•|) has equal char-
acteristic if characteristic(K) = characteristic(k). Otherwise it has mixed characteristic.

Example. Qp has mixed characteristic.

Theorem 7.7. Assuming that:

• K is a non-archimedean local field of equal characteristic p > 0

Then K ∼= Fpn((t)) for some n ≥ 1.

Proof. K complete discretely valued, characteristicK > 0. Moreover, k ∼= Fpn is finite, hence perfect.

By Theorem 5.6, K ∼= Fpn((t)).

Lemma 7.8. Assuming that:

• K a field

Then an absolute value |•| is non-archimedean if and only if |n| is bounded for all n ∈ Z.
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Proof.

⇒ Since | − 1| = 1, | − n| = |n|, it suffices to show that |n| bounded for n ≥ 1. Then note that

|n| = |1 + 1 + · · ·+ 1| ≤ 1.

⇐ Suppose |n| ≤ B for all n ∈ Z. Let x, y ∈ K with |x| ≤ |y|. Then we have

|x+ y|m =

∣∣∣∣∣
m∑
i=0

(
m

i

)
xiym−i

∣∣∣∣∣
≤

m∑
i=0

∣∣∣∣(mi
)
xiym−i

∣∣∣∣
≤ |y|mB(m+ 1)

Taking m-th roots gives
|x+ y| ≤ |y|[B(m+ 1)]

1
m .

The right hand side tends to |y| as m→ ∞, hence

|x+ y| ≤ |y| = max(|x|, |y|) .

Lecture 9

Theorem 7.9 (Ostrowski’s Theorem). Assuming that:

• |•| is a non-trivial absolute value on Q

Then |•| is equivalent to either the usual absolute value |•|∞ or the p-adic absolute value |•|p
for some prime p.

Proof. Case: |•| is archimedean. We fix b > 1 an integer such that |b| > 1 (exists by Lemma 7.8). Let
a > 1 be an integer and write bn in base a:

bn = cma
m + cm−1a

m−1 + · · ·+ c0

with 0 ≤ ci < a, cm 6= 0. Let B = max0≤c<a−1(|c|), and then we have

|bn| ≤ (m+ 1)Bmax(|a|m, 1)
=⇒ |b| ≤ [n(loga b+ 1)B]1/n︸ ︷︷ ︸

→1

max(|a|loga b, 1) m ≤ loga b
n

=⇒ |b| ≤ max(|a|loga b, 1)

Then |a| > 1 and
|b| ≤ |a| loga b. (∗)
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Switching roles of a and b, we also obtain

|a| ≤ |b| logb a. (∗∗)

Then (∗) and (∗∗) gives (using loga b =
log b
log a ):

log |a|
log a

=
log |b|
log b

= λ ∈ R>0.

Hence |a| = aλ for all a ∈ Z>1, hence |x| = |x|λ∞ for all x ∈ Q.

Case 2: |•| is non-archimedean. As in Lemma 7.8, we have |n| ≤ 1 for all n ∈ Z. Since |•| is non-
trivial, there exists n ∈ Z>1 such that |n| < 1. Write n = pe11 · · · perr decomposition into prime factors.
Then |p| < 1, for some p ∈ {p1, . . . , pr}. Suppose |q| < 1 for some prime q, q 6= p. Write 1 = rp + sq
with r, s ∈ Z. Then

1 = |rp+ sq|
≤ max(|rp| , |sq|)
< 1

contradiction. Thus |p| = α < 1 and |q| = 1 for all primes q 6= p. Hence |•| is equivalent to |•|p.

Theorem 7.10. Assuming that:

• (K, |•|) is a non-archimedean local field of mixed characteristic

Then K is a finite extension of Qp.

Proof. K mixed characteristic implies that characteristicK = 0, hence Q ⊆ K. K non-archimedean
implies that |•|

∣∣
Q = |•| p for some prime p. Since K is complete, Qp ⊆ K. Suffices to show that OK

is finite as a Zp-module.

Let π ∈ OK be a uniformiser, v a normalised valuation and set v(p) = e. Then OK/pOK
∼= OK/π

eOK

is finite since πiOK/π
i+1OK

∼= OK/πOK is finite. Since Fp ∼= Z/pZ ↪→ OK/pOK we have OK/pOK

a finite dimensional vector space over Fp.

Let x1, . . . , xn ∈ OK be coset representatives for Fp-basis of OK/pOK . Then{
n∑
i=1

aixi

∣∣∣∣∣ai ∈ {0, . . . , r − 1}

}
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is a set of coset representatives for OK/pOK . Let y ∈ OK . Proposition 3.4(ii) tells us that

y =

∞∑
i=0

 n∑
j=1

aijxj

 pi (aij ∈ {0, . . . , p− 1})

=

n∑
j=1

( ∞∑
i=0

aijp
i

)
xj

∈ Zp

Hence OK is finite over Zp.

On Example Sheet 2 we will show that if K is complete and archimedean, then K ' R or C. In
summary:

If K a local field, then either:

(i) K ∼= R or C (archimedean)

(ii) K ∼= Fpn((t)) (non-archimedean equal characteristic)

(iii) K a finite extension of Qp (non-archimedean mixed characteristic)
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8 Global Fields

Definition 8.1 (Global field). A global field is a field which is either:

(i) An algebraic number field

(ii) A global function field, i.e. a finite extension of Fp(t).

Lemma 8.2. Assuming that:

• (K, |•|) is a complete discretely valued field

• L/K a finite Galois extension with absolute value |•| L extending |•|.

Then for x ∈ L and σ ∈ Gal(L/K), we have |σ(x)| L = |x| L.

Proof. Since x 7→ |σ(x)| L is another absolute value on L extending |•| on K, the result follows from
uniqueness of |•| L.

Lemma 8.3 (Kummer’s Lemma). Assuming that:

• (K, |•|) a complete discretely valued field

• f(X) ∈ K[X] a separable irreducible polynomial with roots α1, . . . , αn ∈ Ksep (Ksep is
the separable closure of K)

• β ∈ Ksep with
|β − α1| < |β − αi|

for i = 2, . . . , n.

Then α1 ∈ K(β).

Proof. Let L = K(β), L′ = L(α1, . . . , αn). Then L′/L is a Galois extension. Let σ ∈ Gal(L′/L). We
have

|β − σ(α1)| = |σ(β − α1)|
= |β − α1|

using Lemma 8.2. Hence σ(α1) = α1, so α1 ∈ K(β).

Proposition 8.4. Assuming that:

• (F, |•|) is a complete discretely valued field
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• f(X) =
∑n
i=0 aiX

i ∈ OK [X] a separable irreducible monic polynomial

• α ∈ Ksep a root of f

Then there exists ε > 0 such that for any g(X) =
∑n
i=0 biX

i ∈ OK [X] monic with |ai − bi| < ε
for all i, there exists a root β of g(X) such that K(α) = K(β).

“Nearby polynomials define the same extensions”.

Proof. Let α1, . . . , αn ∈ Ksep be the roots of f which are necessarily distinct. Then f ′(α1) 6= 0. We
choose ε sufficiently small such that |g(α1)| < |f ′(α1)|2 and |f ′(α1)− g′(α1)| < |f ′(α1)|. Then we have
|g′(α1)| < |f ′(α1)|2 = |g′(α1)|2 (the equality is by Lemma 1.6).

By Hensel’s Lemma version 1 applied to the field K(α1) there exists β ∈ K(α1) such that g(β) = 0
and |• − α1| < |g′(α1)|. Then

|g′(α1)| = |f ′(α1)|

=

n∏
j=1

|α1 − αj |

≤ |α1 − αi|

for i = 2, . . . , n. (Use |α1 − αi| ≤ 1 since αi integral). Since |β − α1| < |α1 − αi| = |β − αi| using
Lemma 1.6, we have that Kummer’s Lemma gives that α1 ∈ K(β) and hence K(α1) = K(β).

Lecture 10

Theorem 8.5. Assuming that:

• K is a local field

Then K is the completion of a global field.

Proof. Case 1: |•| is archimedean. Then R is the completion of Q, and C is the completion of Q(i)
(with respect to |•|∞).

Case 2: |•| non-archimedean, equal characteristic. Then K ∼= Fq((t)) is the completion of Fq(t) with
respect to the t-adic valuation.

Case 3: |•| non-archimedean mixed characteristic. Then K = Qp(α), with α a root of a monic irre-
ducible polynomial f(X) ∈ Zp[X]. Since Z is dense in Zp, we choose g(X) ∈ Z[X] as in Proposition 8.4.
Then K = Q(β) with β a root of g(X). Since Q(β) dense in Qp(β) = K, and K is complete, we must
have that K is the completion of Q(β).
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Part IV

Dedekind domains
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9 Dedekind domains

Definition 9.1 (Dedekind domain). A Dedekind domain is a ring R such that

(i) R is a Noetherian integral domain.

(ii) R is integrally closed in Frac(R).

(iii) Every non-zero prime ideal is maximal.

Example.

• The ring of integers in a number field is a Dedekind domain.

• Any PID (hence a discrete valuation ring) is a Dedekind domain.

Theorem 9.2. A ring R is a discrete valuation ring if and only if R is a Dedekind domain with
exactly one non-zero prime.

Lemma 9.3. Assuming that:

• R is a Noetherian ring

• I ⊆ R a non-zero ideal

Then there exists non-zero prime ideals p1, . . . , pr such that p1, . . . , pr ⊆ I.

Proof. Suppose not. Since R is Noetherian, we may choose I maximal with this property. Then I is
not prime, so there exists x, y ∈ R \ I such that x, y ∈ I.

Let I1 + (x), I2 = I + (y). Then by maximality of I, there exist p1, . . . , pr and q1, . . . , qs such that
p1 · · · pr ⊆ I1 and q1 · · · qs ⊆ I2. Then p1 · · · prq1 · · · qs ⊆ I1I2 ⊂ I.

Lemma 9.4. Assuming that:

• R is an integral domain

• R is integrally closed in K = Frac(R)

• 0 6= I ⊆ R a finitely generated ideal

• x ∈ K

Then if xI ⊆ I, we have x ∈ R.
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Proof. Let I = (c1, . . . , cn). We write

xci =

n∑
j=1

aijcj

for some aij ∈ R. Let A be the matrix A = (aij)1≤i,j≤n and set B = x idn−A ∈Mn×n(K).

Then in Kn

B

c1...
cn

 = 0.

Multiply by adj(B), the adjugate matrix for B. We have

det(B) idn

c1...
cn

 = 0.

Hence det(B) = 0. But detB is a monic polynomial with coefficients in R. Then x is integral over R,
hence x ∈ R.

Proof of Theorem 9.2.

⇒ Clear.

⇐ We need to show R is a PID. The assumption implies that R is a local ring with unique maximal
ideal m.
Step 1: m is principal.
Let 0 6= x ∈ m. By Lemma 9.3, (x) ⊇ mn for some n ≥ 1. Let n minimal such that (x) ⊃ mn,
then we may choose y ∈ mn−1 \ (x).
Set π = x

y . Then we have ym ⊆ mn ⊆ (x) and hence π−1m ⊆ R. If π−1m ⊆ m, then π−1 ∈ R by
Lemma 9.4 and y ∈ (x), contradiction. Hence π−1m = R, so m = πR is principal.
Step 2: R is a PID.
Let I ⊆ R be a non-zero ideal. Consider a sequence of fractional ideals I ⊆ π−1I ⊆ π−2I ⊆ · · · in
K. Then since π−1 /∈ R, we have π−kI 6= π−(k+1)I for all k by Lemma 9.4. Therefore since R is
Noetherian, we may choose n maximal such that π−nI ⊆ R. If π−nI ⊆ m = (π), then π−(n+1) ⊆ R.
So we must have π−nI = R, and hence I = (πn).

Let R be an integral domain and S ⊆ R a multiplicatively closed subset (x, y ∈ S implies xy ∈ S, and
also have 1 ∈ S). The localisation S−1R of R with respect to S is the ring

S−1R =

{
r

s

∣∣∣∣r ∈ R, s ∈ S

}
⊆ Frac(R).

If p is a prime ideal in R, we write R(p) for the localisation with respect to S = R \ p.
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Example.

• p = (0), then R(p) = Frac(R).

• R = Z, Z(p) =
{
a
b

∣∣a ∈ Z, (b, p) = 1
}

, where p is a rational prime.

Facts: (not proved in this course, but can be found in a typical course / textbook on commutative
algebra)

• R Noetherian implies S−1R is Noetherian.

•

Corollary 9.5. Let R be a Dedekind domain and p ⊆ R a non-zero prime ideal. Then R(p) is
a discrete valuation ring.

Proof. By properties of localisation, R(p) is a Noetherian integral domain with a unique non-zero prime
ideal pR(p).

It suffices to show R(p) is integrally closed in Frac(R(p)) = Frac(R) (since then R(p) is a Dedekind
domain hence by Theorem 9.2, R(p) is a discrete valuation ring).

Let x ∈ Frac(R) be integral over R(p). Multiplying by denominators of a monic polynomial satisfied
by x, we obtain

sxn + an−1x
n−1 + · · ·+ a0 = 0,

with ai ∈ R, s ∈ S = R \ p. Multiply by sn−1. Then xs is integral over R, so xs ∈ R. Hence
x ∈ R(p).

Lecture 11
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Definition 9.6 (Valuation on a Dedekind domain). If R is a Dedekind domain, and p ⊆ R
a non-zero prime ideal, we write vp for the normalised valuation on Frac(R) = Frac(R(p))
corresponding to the discrete valuation ring R(p).

Example. R = Z, p = (p), then vp is the p-adiv valuation.

Theorem 9.7. Assuming that:

• R is a Dedekind domain

• I ⊆ R a non-zero ideal

Then Ican be written uniquely as aproduct of prime ideals:

I = pe11 · · · perr

(with pi distinct).

Remark. Clear for PIDs (PID implies UFD).

Proof (Sketch). We quote the following properties of localisation:

(i) I = J ⇐⇒ IR(p) = JR(p) for all prime ideals p.

(ii) If R a Dedekind domain, p1, p2 non-zero ideals, then

p1R(p2) =

{
p2R(p2) p1 = p2

R(p2) p1 6= p2

Let I ⊆ R be a non-zero ideal. By Lemma 9.3, there are distinct prime ideals p1, . . . , pr such that
pβ1

1 · · · pβr
r ⊆ I, where βi > 0.

Let 0 6= p be a prime ideal, p /∈ {p1, . . . , pr}. Then property (ii) gives that piR(p) = R(p), and hence
IR(p) = R(p).

Corollary 9.5 gives IR(p) = (piR(pi))
αi = pαi

i R(pi) for some 0 ≤ αi ≤ βi. Thus I = pα1
1 · · · pαr

r by
property (i).

For uniqueness, if I = pα1
1 · · · pαr

r = pγ11 · · · pγrr then pαi
i R(pi) = pγii R(pi) hence ai = γi by unique

factorisation in discrete valuation rings.
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10 Dedekind domains and extensions

Let L/K be a finite extension. For x ∈ L, we write TrL/K(x) ∈ K for the trace of the K-linear map
L→ L, y 7→ xy.

If L/K is separable of degree n and σ1, . . . , σn : L → Kdenotes the set of embeddings of L into an
algebraic closure K, then TrL/K(x) =

∑n
i=1 σi(x) ∈ K.

Lemma 10.1. Assuming that:

• L/K a finite separable extension of fields

Then the symmetric bilinear pairing

(•, •) → K

(x, y) 7→ TrL/K(xy)

is non-degenerate.

Proof. L/K separable tells us that L = K(α) for some α ∈ L. Consider the matrix A for (•, •) in the
K-basis for L given by 1, α, . . . αn−1.

Then Aij = TrL/K(αi+j) = [BB>]ij where

B =


1 1 · · · 1

σ1(α) σ2(α) · · ·σn(α)
...

...
. . .

...
σ1(α

n−1) σ2(α
n−1) · · · σn(α

n−1)


So

detA = det(B)2 =

 ∏
1≤i<j≤n

(σi(α)− σj(α))

2

(Vandermonde determinant), which is non-zero since σi(α) 6= σj(α) for i 6= j by separability.

Exercise: On Example Sheet 3 we will show that a finite extension L/K is separable if and only if
the trace form is non-degenerate.

Theorem 10.2. Assuming that:

• OK a Dedekind domain

• L a finite separable extension of K = Frac(OK)

Then the integral closure OL of OK in L is a Dedekind domain.
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Proof. OL a subring of L, hence OL is an integral domain.

Need to show:

(i) OL is Noetherian.

(ii) OL is integrally closed in L.

(iii) Every 6= 0 prime ideal P in OL is maximal.

Proofs:

(i) Let e1, . . . , en ∈ L be a K-basis for L. Upon scaling by K, we may assume ei ∈ OL for all i.
Let fi ∈ L be the dual basis with respect to the trace form (•, •). Let x ∈ OL, and write
x =

∑n
i=1 λifi, λi ∈ K. Then λi = TrL/K(xei) ∈ OK .

(For any z ∈ OL, TrL/K(z) is a sum of elements in K which are integral over OK . Hence
TrL/K(z) ∈ K is integral over OK , hence TrL/K(z) ∈ OK .)
Thus OL ⊆ OKf1 + · · · + OKfn ⊆ L. Since OK is Noetherian, OL is finitely generated as an
OK-module, hence OL is Noetherian.

(ii) Example Sheet 2.

(iii) Let P be a non-zero prime ideal of OL, and p := P ∩OK be a prime ideal of OK . Let 0 6= x ∈ P .
Then x satisfies an equation

xn + an−1x
n−1 + · · ·+ a0 = 0, ai ∈ OK ,

with a0 6= 0. Then a0 ∈ P ∩ OK is a non-zero element of p, hence p is non-zero, hence p is
maximal.
We have OK/p ↪→ OL/P , and OL/P is a finite dimensional vector space over OK/p. Since OL/P
is an integral domain and finite, it is a field.

Remark. Theorem 10.2 holds without the assumption that L/K is separable.

Corollary 10.3. The ring of integers of a number field is a Dedekind domain.

Convention: OK is the ring of integers of a number field – p ≤ OK a non-zero prime ideal. We
normalise | • |p (absolute value associated to vp, as defined in Definition 9.6) by |x|p = (Np)−vp(x),
where Np = |OK/p|.Lecture 12

In the following theorems and lemmas we will have:

• OK a Dedekind domain
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• K = Frac(OK)

• L/K finite separable

• OL the integral closure of OK in L (which is a Dedekind domain by Theorem 10.2).

Lemma 10.4. Assuming that:

• 0 6= x ∈ O)K

Then
(x) =

∏
p 6=0

prime ideal

pvp(x).

Proof. xOK,(p) = (pOK,(p))
vp(x) by definition of vp(x).

Lemma follows from property of localisation

I = J ⇐⇒ IOK,(p) = JOK,(p)

for all prime ideals p.

Notation. P ≤ OL, p ≤ OK non-zero prime ideals. We write P | p if pOL = P e11 · · ·P err and
P ∈ {P1, . . . , Pr} (ei > 0, P distinct).

Theorem 10.5. Assuming that:

• OK , OL, K, L as usual

• for p a non-zero prime ideal of OK , we write pOLP
e1
1 · · ·P err

Then the absolute values on L extending | • |p (up to equivalence) are precisely | • |P1 , . . . , | • |PL
.

Proof. By Lemma 10.4 for any 0 6= x ∈ OK and i = 1, . . . , r we have vPi
(x) = eivp(x). Hence, up to

equivalence, | • |Pi extends | • |p.

Now suppose | • | is an absolute value on L extending | • |p. Then | • | is bounded on Z, hence is
non-archimedean. Let R = {x ∈ L | |x| ≤ 1} ≤ L be the valuation ring for L with respect to | • |.
Then OK ⊆ R, and since R is integrally closed in L (Lemma 6.8), we have OL ⊆ R. Set

P := {x ∈ OL | |x| < 1}
= mR ∩ OL

(where mR is the maximal ideal of R).
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Hence P a prime ideal in OL. It is non-zero since p ⊆ P . Then OL,(p) ⊆ R, since s ∈ OL \ P =⇒
|s| = 1.

But OL,(p) is a discrete valuation ring, hence a maximal subring of L, so OL,(p) = R. Hence | • | is
equivalent to | • |p. Since | • | extends | • |p, P ∩OK = p so P e11 · · ·P err ⊆ P , so P = Pi for some i.

Let K be a number field. If σ : K → R,C is a real or complex embedding, then x 7→ |σ(x)|∞ defines
an absolute value on K (Example Sheet 2) denoted | • |σ.

Corollary 10.6. Let K be a number field with ring of integers OK . Then any absolute value
on K is equivalent to either

(i) | • |p for some non-zero prime ideal of OK .

(ii) | • |σ for some σ : K → R,C.

Proof. Case 1: |•| non-archimedean. Then |•|
∣∣
Q is equivalent to |•|p for some prime p by Ostrowski’s

Theorem. Theorem 10.5 gives that | • | is equivalent to | • |p for some p ⊆ OK a prime ideal with p | p.

Case 2: | • | archimedean. See Example Sheet 2.

10.1 Completions

OK a Dedekind domain, L/K a finite separable extension.

Let p ⊆ OK , P ⊆ OL be non-zero prime ideals with P | p.

We write Kp and LP for the completions of K and L with respect to the absolute values | • |p and
| • |P respectively.

Lemma 10.7.

(i) The natural πP : L⊗K Kp → LP is surjective.

(ii) [LP : KP ] ≤ [L : K].

Proof. Let M = LKp = Im(πP ) ⊆ LP .

Write L = K(α) then M = Kp(α). Hence M is a finite extension of Kp and [M : Kp] ≤ [L : K].
Moreover M is complete (Theorem 6.1) and since L ⊆M ⊆ LP , we have M = LP .
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Lemma 10.8 (Chinese remainder theorem). Assuming that:

• R a ring

• I1, . . . , In ⊆ R ideals

• Ii + Ij = R for all i 6= j

Then

(i)
⋂n
i=1 =

∏n
i=1 Ii (= I say).

(ii) R/I ∼=
∏n
I=1R/Ii.

Proof. Example Sheet 2.

Theorem 10.9. The natural map

L⊗K Kp →
∏
P |p

LP

is an isomorphism.

Proof. Write L = K(α) and let f(X) ∈ K[X] be the minimal polynomial of α. Then we have

f(X) = f1(X) · · · fr(X) ∈ Kp[X]

where fi(X) ∈ Kp[X] are distinct irreducible (separable). Since L ∼= K[X]/f(X),

L⊗K Kp
∼= Kp[X]/fi(X) ∼=

r∏
i=1

Kp[X]/fi(X).

Set Li = Kp[X]/fi(X) a finite extension of Kp. Then Li contains both Kp and L (use K[X]/f(x) →
Kp[X]/fi(X) injective since morphism of fields). Moreover L is dense inside Li (approximate coeffi-
cients of Kp[X]/fi(X) with an element of K[X]/fi(X)).

The theorem follows from the following three claims:

(1) Li ∼= LP for some prime P of OL dividing p.

(2) Each P appears at most once.

(3) Each P appears at least once.

Proof of claims:
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(1) Since [Li : Kp] < ∞, there is a unique absolute value on Li extending | • |p. Theorem 10.5 gives
us that | • |

∣∣
L

is equivalent to | • |P for some P | p. Since L is dense in L and Li is complete, we
have Li ∼= LP .

(2) Suppose ϕ : Li → Lj is an isomorphism preserving L and Kp; then

ϕ : Kp[X]/fi(X) → Kp[X]/fi(X)

takes x to x and hence fi = fi.

(3) By Lemma 10.7, the natural map πP : L⊗K Kp → LP is surjective for any prime P | p.
Since LP is a field, πP factors through Li for some i, and hence Li ∼= LP by surjectivity of πP .

Lecture 13

Example. K = Q, L = Q(i), f(X) = X2 + 1. Hensel’s Lemma version 1 gives us that√
−1 ∈ Q5. Hence (5) splies in Q(i), i.e. 5OL = p1p2.

Corollary 10.10. Let 0 6= p ⊆ OK a prime ideal. For x ∈ L we have

NL/K(x) =
∏
P |p

NLP /Lp
(x).

Proof. Let B1, . . . , Br be bases for LP1 , . . . , LPr as Kp-vector spaces. Then B =
⋃
iBi is a basis for

L⊗KKp over Kp. Let [mult(x)]B (respectively [mult(x)]Bi) denote the matrix for mult(x) : L⊗KKp →
L⊗K Kp (respectively LPi

→ LPi
) with respect to the basis B (respectively Bi). Then

[mult(x)]B =

[mult(x)]B1

. . .

[mult(x)]Br


hence

NL/K(x) = det([mult(x)]B)

=

r∏
i=1

det[mult(x)]Bi

=

r∏
i=1

NLPi
/Kp

(x)
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11 Decomposition groups

Definition 11.1 (Ramification). Let 0 6= p be a prime ideal of OK , and

pOL = P e11 · · ·P err

with Pi distinct prime ideals in OL, and ei > 0.

(i) ei is the ramification index of Pi over p.

(ii) We say p ramifies in L if some ei > 1.

Example. OK = C[t], OL = C[T ]. OK → OL sends t 7→ Tn. Then tOL = TnOL, so the
ramification index of (T ) over (t) is n.
Corresponds geometrically to the degree n of covering of Riemann surfaces C → C, x 7→ xn.

Definition 11.2 (Residue class degree). fi := [OL/Pi : OK/p] is the residue class degree of Pi
over p.

Theorem 11.3.
∑r
i=1 eifi = [L : K].

Proof. Let S = OK \ (p). Exercise (properties of localisation):

(1) S−1OL is the integral closure of S−1OK in L.

(2) S−1pS
−1OL

∼= S−1P e11 · · ·S−1P err .

(3) S−1OL/S
−1Pi ∼= OL/Pi and S−1OK/S

−1p ∼= OK/p.

In particular, (2) and (3) imply ei and fi don’t change when we replace OK and OL by S−1OK and
S−1OL.

Thus we may assume that OK is a discrete valuation ring (hence a PID). By Chinese remainder
theorem, we have

OL/pOL
∼=

r∏
i=1

OL/P
ei
i .

We count dimension as k := OK/p vector spaces.

RHS: for each i, there exists a decreasing sequence of k-suibspaces

0 ⊆ P ei−1i /P eii ⊆ · · · ⊆ Pi/P
ei
i ⊆ OL/P

ei
i .
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Thus dimkOL/P
ei
i =

∑ei−1
j=0 dimk(P

j
i /P

j+1
i ). Note that P ji /P

j+1
i is an OL/Pi-module and x ∈ P ji \

P j+1
i is a generator (for example can prove this after localisation at Pi).

Then dimk P
j
i /P

j+1
i = fi and we have

dimkOL/P
ei
i = eifi,

and hence

dimk

r∏
i=1

OL/P
ei
i =

r∑
i=1

eifi.

LHS: Structure theorem for finitely generated modules over PIDs tells us that OL is a free module
over OK of rank n.

Thus OL/pOL
∼= (OK/p)

n as k-vector spaces, hence dimkOL/pOL = n.

Geometric analogue:

f : X → Y a degree n cover of compact Riemann surfaces. For y ∈ Y :

n =
∑

x∈f−1(y)

e− x

where ex is the ramification index of x. Now assume L/K is Galois. Then for any σ ∈ Gal(L/K),
σ(Pi) ∩ OK = p and hence σ(Pi) ∈ {P1, . . . , Pr}.

Proposition 11.4. The action of Gal(L/K) on {P1, . . . , Pr} is transitive.

Proof. Suppose not, so that there exists i 6= j such that σ(Pi) 6= Pj for all σ ∈ Gal(L/K).

By Chinese remainder theorem, we may choose x ∈ OL such that x ≡ 0 mod Pi, x ≡ 1 mod σ(Pi)
for all σ ∈ Gal(L/K). Then

NL/K(x) =
∏

σ∈Gal(L/K)

σ(x) ∈ OK ∩ Pi = p ⊆ Pj .

Since Pj prime, there exists τ ∈ Gal(L/K) such that τ(x) ∈ Pj . Hence x ∈ τ−1(Pj), i.e. x ≡ 0
mod τ−1(Pj), contradiction.

Corollary 11.5. Suppose L/K is Galois. Then e1 = · · · = er = e, f1 = · · · = fr = f , and we
have n = efr.

Proof. For any σ ∈ Gal(L/K) we have
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(i) pOL = σ(p)OL = σ(P1)
e1 · · ·σ(Pr)er , hence e1 = · · · = er.

(ii) OL/Pi ∼= OL/σ(Pi) via σ. Hence f1 = · · · = fr.

If L/Kis an extension of complete discretely valued fields with normalised valuations vL, vK and
uniformisers πL, πK , then the ramification index is e = eL/K = vL(πK). The residue class degree is
f := fL/K = [kL : k].

Corollary 11.6. Let L/K be a finite separable extension. Then [L : K] = ef .

OK a Dedekind domain:

Definition 11.7 (Decomposition). Let L/K be a finite Galois extension. The decomposition
at a prime P of OL is the subgroup of Gal(L/K) defined by

GP = {σ ∈ Gal(L/K) | σ(P ) = P}.
Lecture 14

Proposition 11.8. Assuming that:

• OK a Dedekind domain

• L/K a finite Galois extension

• 0 6= P ⊆ OL a prime ideal

• P | p ⊆ OK

Then

(i) LP /Kp is Galois.

(ii) There is a natural map
res : Gal(LP /Kp) → Gal(L/K)

which is injective and has image GP .

Proof.

(i) L/K Galois implies that L is a splitting field of a separable polynomial f(X) ∈ K[X]. Hence LP
is the splitting field of f(X) ∈ K [X], hence LP /Kp is Galois.

(ii) Let σ ∈ Gal(LP /Kp), then σ(L) = L since L/K is normal, hence we have a map res :
Gal(LP /Kp) → Gal(L/K), σ 7→ σ|L. Since L is dense in LP , res is injective. By Lemma 8.2, we
have

|σ(x)|P = |x|P
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for all σ ∈ Gal(LP /Kp) and x ∈ LP . Hence σ(P ) = P for all σ ∈ Gal(LP /Kp) and hence
res(σ) ∈ GP for all σ ∈ Gal(LP /Kp).
To show surjectivity, it suffices to show that

|GP | = ef = [LP : Kp].

Write pOL = P e11 · · ·P err , f = [OL/P : OK/p]. Then

• |GP | = |Gal(L/K)|
r = efr

r = ef (using Corollary 11.5).
• [LP : Kp] = ef . Apply Corollary 11.6 to LP /Kp, noting that e, f don’t change when we

take completions.
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Part V

Ramification Theory

p = p1p2 in Z[i] if and only if p = x2 + y2.

We will consider L/K extension of algebraic number fields with [L : K] = n.

57



12 Different and discriminant

Notation. Let x1, . . . , xn ∈ L. Set

∆(x1, . . . , xn) = det(TrL/K(xixj)) ∈ K

= det

(
n∑
k=1

σk(xi)σk(xj)

)
= det(BB>)

where σk : L→ K are distinct embeddings and B = (σi(xj)).

Note:

• If yi =
∑n
j=1 aijxj , aij ∈ K, then

∆(y1, . . . , yn) = det(A)2∆(x1, . . . , xn)

where A = (aij).

• If x1, . . . , xn ∈ OL, then ∆(x1, . . . , xn) ∈ OK .

Lemma 12.1. Assuming that:

• k a perfect field

• R a k-algebra which is finite dimensional as a k-vector space

Then the Trace form

(•, •) : R×R→ R

(x, y) 7→ TrR/k(xy)(:= Trk(mult(xy)))

is non-degenerate if and only if R = k1×· · ·×kr where ki/k is a finite separable extension of k.

Proof. Example Sheet 3.

Theorem 12.2. Assuming that:

• 0 6= p ⊆ OK prime ideal

Then

(i) If p ramifies in L, then for every x1, . . . , xn ∈ OL, we have ∆(x1, . . . , xn) ≡ 0 mod p.
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(ii) If p is unramified in L, then there exists x1, . . . , xn such that p - (∆(x1, . . . , xn)).

Proof.

(i) Let pOL = P e11 · · ·P err , 0 6= Pi ⊆ OL distinct prime ideals, ei > 0. Define

R := OL/pOL
CRT
=

r∏
i=1

OL/P
ei
i .

If p ramifies, then OL/pOL has nilpotents. Hence

∆(x1, . . . , xn) = 0 ∀xi ∈ OL/pOL.

Then using the fact that
OL R = OL/pOL

OK k = OK/p

TrL/K TrR/k

commutes, we get that

∆(x1, . . . , xn) ≡ 0 mod p ∀xi ∈ OL/pOL.

(ii) p unramified implies R = OL/pOL is a product of finite extensions of k. By Lemma 12.1, we
get that the Trace form is non-degenerate, hence for x1, . . . , xn a basis of OL/pOL as a k vector
space, we have ∆(x1, . . . , xn) 6= 0. So thee exist x1, . . . , xn ∈ OL such that

∆(x1, . . . , xn) 6≡ 0 mod p.

Definition 12.3 (Discriminant). The discriminant is the ideal dL/K ⊆ OK generated by
∆(x1, . . . , xn) for all choices of x1, . . . , xn ∈ OL.

Corollary 12.4. p ramifies L if and only if p | dL/K . In particular, only finitely many primes
ramify in L.

Definition 12.5 (Inverse different). The inverse different is

D−1L/K = {y ∈ L : TrL/K(xy) ∈ OK ∀x ∈ OL},

an OL submodule of L.
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Lemma 12.6. D−1L/K is a fractional ideal in L.

Proof. Let x1, . . . , xn ∈ OL a K-basis for L/K. Set

d := ∆(x1, . . . , xn) = det(TrL/K(xixj)),

which is non-zero since separable.

For x ∈ D−1L/K write x =
∑r
j=1 λjxj with λj ∈ K. We show λj ∈ 1

dOK . We have

TrL/K(xxi) =

n∑
j=1

λj TrL/K(xixj) ∈ OK .

Set Aij = TrL/K(xixj). Multiplying by Adj(A) ∈Mn(OK), we get

d

λ1...
λn

 = Adj(A)

TrL/K(xx1)
...

TrL/K(xxn)


Since λi ∈ 1

dOK , we have x ∈ 1
dOL. Thus D−1L/K ≤ 1

dOK
, so D−1L/K is a fractional ideal.

The inverse DL/K of D−1L/K is the different ideal.Lecture 15

Remark. DL/K ≤ OL since OL ⊆ D−1L/K .

Let IL, IK be the groups of fractional ideals.

Theorem 9.7 gives that

IL ∼=
⊗
0 6=P

prime ideals in OL

Z, IK ∼=
⊗
0 6=P

prime ideals in OK

.

Define NL/K : IL → IK induced by P 7→ pf for p = P ∩ OK and f = f(P/p).

Fact:
L× IL

K× IK

NL/K NL/K

(Use Corollary 10.10 and vp(NLP /Kp
(x)) = fP/pv(x) for x ∈ LP

× where vp and vP are the normalised
valuations for LP , Kp).
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Theorem 12.7. NL/K(DL/K) = dL/K .

Proof. First assume OK , OL are PIDs. Let x1, . . . , xn be an OK-basis for OL and y1, . . . , yn be the
dual basis with respect to trace form. Then y1, . . . , yn is a basis for D−1L/K . Let σ1, . . . , σn : L→ K be
the distinct embeddings. Have

n∑
i=1

σi(xj)σi(yk) = Tr(xjyk) = δjk.

But
∆(x1, . . . , xn) = det(σi(xj))

2.

Thus
∆(x1, . . . , xn)∆(y1, . . . , yn) = 1.

Write D−1L/K = βOL since β ∈ L. Then

d−1L/K = (∆(x1, . . . , xn)
−1)

= (∆(y1, . . . , yn))

= (∆(βx1, . . . , βxn)) change of basis matrix is invertible in OK

= NL/K(β2)∆(x1, . . . , xn) change of basis matrix is [mult(β)]

Thus
d−1L/K = NL/K(D−1L/K)2dL/K

so
NL/K(DL/K) = dL/K .

In general, localise at S = OK\p and use S−1DL/K = DS−1OL/S−1OK
. Then S−1dL/K = dS−1OL/S−1OK

.
Details omitted.

Theorem 12.8. Assuming that:

• OL = OK [α]

• α has monic minimal polynomial g(X) ∈ OK [X]

Then DL/K = (g′(α)).

Proof. Let α = α1, . . . , αn be the roots of g. Write

g(X)

X − α
= βn−1X

n−1 + · · ·+ β1X + β0
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with βi ∈ OL and βn−1 = 1. We claim

n∑
i=1

g(X)

X − αi

αni
g′(αi)

= Xr

for 0 ≤ r ≤ n− 1.

Indeed the difference is a palynomial of degree < n, which vanishes for X = α1, . . . , αn. Equate
coefficients of Xs, which gives

TrL/K

(
αrβs
g′(α)

)
= δrs.

Since 1, α, . . . , αn−1 is an OK basis for OL, D−1L/K has an OK basis

β0
g′(α)

,
β1
g′(α)

, . . . ,
βn−1
g′(α)︸ ︷︷ ︸

1
g′(α)

.

Note all of these are OL multiples of the last term, since the βi are in OL. So D−1L/K = 1
(g′(α)) , hence

DL/K = (g′(α)).

P a prime ideal of OL, p = OK ∩P . DLP /Kp
using OKp

, OLP
. We identify DLP /Kp

with a power P.

Theorem 12.9. DL/K =
∏
P DLP /Kp

(finite product, see later).

Proof. Let x ∈ L, p ⊆ OK . Then

TrL/K(x) =
∑
P|p

TrLP /Kp
(x) (∗)

(of Corollary 10.10).

Let r(P) = vP(DL/K), s(P) = vP(DLP /Kp
).

⊆ (i.e. r(P) ≥ s(P)). Let x ∈ L with vP(x) ≥ −s(P) for all P. Then TrLP /Kp
(xy) ∈ OKp

, for all
y ∈ L and for all P. Using (∗) we get

TrL/K(xy) ∈ OKp
∀y ∈ OL,∀P.

Thus
TrL/K(xy) ∈ OK ∀y ∈ OL

so DL/K ⊆
∏
P DLP/Kp

.
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⊇ (i.e. r(P) ≤ s(P)). Fix P and let x ∈ P−r(P ) \ P−r(P )+1. Then vP (x) = −r(P ), vP ′(x) ≥ 0 for all
P ′ 6= P . By (∗), we have

TrLP /Kp
(xy) = TrL/K(xy)−

∑
P ′|p
P ′ 6=P

TrLP /Kp
(xy) ∀y ∈ OL

hence
TrLP /Kp

(xy) ∈ OKp
∀y ∈ OLP

.

Hence x ∈ D−1LP /Kp
, i.e. −vP (x) = r(P ) ≤ s(P ). So DL/K ⊇

∏
P DLP /Kp

.

Corollary 12.10. dL/K =
∏
P |p dLP /Kp

.

Proof. Apply NL/K to DL/K =
∏
P |pDLP /Kp

.
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13 Unramified and totally ramified extensions of local fields

Let L/K be a finite separable extension of non-archimedean local fields. Corollary 11.6 implies

[L : K] = eL/KfL/K . (∗)

Lemma 13.1. Assuming that:

• M/L/K finite separable extensions of local fields

Then

(i) fM/K = fL/KfM/L

(ii) eM/K = eL/KfM/L

Proof.

(i) fM/K = [kM : k] = [kM : kL][kL : k] = fM/LfL/K .

(ii) (i) and (∗).

Definition 13.2 (Unramified / ramified / totally ramified). The extension L/K is said to be:

• unramified if eL/K = 1 (equivalently fL/K = [L : K]).

• ramified if eL/K > 1 (equivalently fL/K < [L : K]).

• totally ramified if eL/K = [L : K] (equivalently fL/K = 1).
Lecture 16

From now on in this course: if unspecified L/K is a finite separable extension of (non-archimedean)
local fields. Also, all local fields that we consider from now on will be non-archimedean.

Theorem 13.3. Assuming that:

• L/K a finite separable extension of non-archimedean local fields

Then there exists a field K0, K ⊆ K0 ⊆ L and such that

(i) K0 is unramified

(ii) L/K0 is totally ramified

Moreover [L : K0] = eL/K , [K0 : K] = fL/K and K0/K is Galois.
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Proof. Let k = Fq, so that kL = Fqf , fL/K = f . Set m = qf − 1, [•] : Fqf → L the Teichmüller map
for L.

Let ζm := [α] for α a generator of F×
qf

. ζm a primitive m-th root of unity. Set K0 = K(ζm) ⊆ L, then
K0/K is Galois and has residue field k0 = Fq(α) = kL. Hence fL/K0

= 1, i.e. L/K0 is totally ramified.

Let res : Gal(K0/K) → Gal(k0/k) be the natural map. For σ ∈ Gal(K0/K). We have σ(ζm) = ζm
if σ(ζm) ≡ ζm mod m (since µm(K0) ∼= µm(k0) by Hensel’s Lemma version 1). Hence res is injective.
Thus |Gal(K0/K)| ≤ |Gal(k0/k)| = fK0/K , so [K0 : K] = fK0/K .

Hence res is an isomorphism, and K0/K is unramified.

Theorem 13.4. Assuming that:

• k = Fq

• n ≥ 1

Then there exists a unique unramified L/K of degree n. Moreover, L/K is Galois and the
natural Gal(L/K) → Gal(kL/k) is an isomorphism. In particular, Gal(L/K) ∼= 〈FrobL/K〉 is
cyclic, where FrobL/K(x) = xq mod mL for all x ∈ OL.

Proof. For n ≥ 1, take L = K(ζm) where m = qn − 1.

As in Theorem 13.3:
Gal(L/K)

∼→ Gal(kL/K) ∼= Gal(Fqn/Fq).

Hence Gal(L/K) is cyclic, generated by a lift of x 7→ xq.

Uniqueness: L/K of degree n unramified. Then Teichmüller gives ζm ∈ L, so L = K(ζm).

Corollary 13.5. L/K a finite Galois extension. Then res : Gal(L/K) → Gal(kL/k) is surjec-
tive.

Proof. res factorises as
Gal(L/K)� Gal(K0/K)

∼→ Gal(kL/k).

Definition 13.6 (Inertial subgroup). The inertial subgroup is

IL/K = ker(Gal(L/K)� Gal(kL/k)).

• Since eL/KfL/K = [L : K], we have |IL/K | = eL/K .

65



• IL/K = Gal(L/K0) – K0 as in Theorem 13.3.

Definition 13.7 (Eisenstein polynomial). f(x) = xn + an−1x
n−1 + · · · + a0 ∈ OK [x] is

Eisenstein if vK(ai) ≥ 1 for all i, and vK(a0) = 1.

Fact: f(x) Eisenstein implies f(x) irreducible.

Theorem 13.8. (i) Let L/K finite totally ramified, πL ∈ OL a uniformiser. Then the mini-
mal polynomial of πL is Eisenstein and OL = OK [πL] (hence L = K(πL))

(ii) Conversely, if f(x) ∈ OK [x] is Eisenstein and a root of if f, then L := K(α)/K is totally
ramified and α is a uniformiser of L.

Proof.

(i) [L : K] = e = eL/K . Let

f(x) = xm + am−1x
m−1 + · · ·+ a0 ∈ OK [x]

the minimal polynomial for πL. Then m ≤ e. Since vL(K×) = eZ, we have vL(aiπi) ≡ e mod e,
for i < m. Hence these terms have distinct valuations. As

πmL = −
m−1∑
i=0

aiπ
i
L.

we have
m = vL(π

m
L ) = min

0≤i≤m−1
(i+ evK(ai))

hence vK(ai) ≥ 1 for all i.
Hence vK(a0) = 1 and m = e. Thus f(x) is Eisenstein and L = K(πL). For y ∈ L, we write
y =

∑e−1
i=0 π

i
Lbi, bi ∈ K. Then

vL(y) = min
0≤i≤e−1

(i+ evK(bi)).

Thus

y ∈ OL ⇐⇒ vL(y) ≥ 0

⇐⇒ vK(bi) ≥ 0∀i
⇐⇒ y ∈ OK [πL]

(ii) Let f(x) = xn+an−1x
n−1+ · · ·+a0 is Eisenstein and e = eL/K . Thus vL(ai) ≥ e and vL(a0) = e.

If vL(α) ≤ 0, we have

vL(α
n) < vL

(
n−1∑
i=0

aiα
i

)
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hence vL(α) > 0. For i 6= 0, vL(aiαi) > e = vL(a0). Therefore

vL(α
n) = vL

(
−
n−1∑
i=0

aiα
i

)
= vL(a0) = e.

Hence nvL(α) = e. But n = [L : K] ≥ e, so n = e and vL(α) = 1.

13.1 Structure of Units

Let [K : Q] <∞, e := eK/Qp
, π a uniformiser in K.

Proposition 13.9. Assuming that:

• r > e
p−1

Then exp(x) =
∑∞
n=0

xn

n! converges on πrOK and induces an isomorphism

(πrOK ,+)
∼→ (1 + πrOK ,×).

Proof.

vK(n!) = evp(n!)

=
e(n− sp(n))

p− 1
Example Sheet 1

≤ e

(
n− 1

p− 1

)
For x ∈ πrOK and n ≥ 1,

vK

(
xn

n!

)
≥ nr − e(n− 1)

p− 1

= r − (n− 1)

(
r − e

p− 1

)
︸ ︷︷ ︸

>0

Hence vK
(
xn

n!

)
→ ∞ as n→ ∞. Thus exp(x) converges.Lecture 17

Since vK
(
xn

n!

)
≥ r for all n ≥ 1, exp(x) ∈ 1 + πrOK .

Consider log: 1 + πrOK → πrOK .

log(1 + x) =

∞∑
n=1

(−1)n−1

n
xn
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which converges as before.

Recall identities in Q[[X,Y ]]:

exp(X + Y ) = exp(X) exp(Y )

exp(log(1 +X)) = 1 +X

log(exp(X)) = X

Thus exp; (πrOK ,+)
∼→ (1 + πrOK ,×) is an isomorphism.

K any local field: UK := O×K , π ∈ OK uniformiser.

Definition 13.10 (s-th unit group). For s ∈ Z, the s-th unit group U
(s)
K is defined by

U
(s)
K = (1 + πsOK ,×).

Set U (0)
K = UK . Then we have

· · · ⊆ U
(s)
K ⊆ U

(s−1)
K ⊆ · · · ⊆ U

(0)
K = UK .

Proposition 13.11.

(i) U
(0)
K /U

(i)
K

∼= (k×,×) (k ∼= OK/π)

(ii) U
(s)
K /U

(s+1)
K

∼= (k,+) for s ≥ 1

Proof.

(i) Reduction modulo π. O×K → k× is surfective with kernel 1 + πOK = U
(1)
K .

(ii) f ;U
(s)
K → k, 1 + πsx 7→ x mod π.

(1 + πsx)(1 + πsy) = 1 + πs(x+ y + πsxy).

x+ y + πsxy ≡ x+ y mod π, hence f is a group homomorphism, surjective with kernel U (s+1)
K .

Remark. Let [K : Qp] <∞. Proposition 13.9, ?? implies that there exists finite index subgroup
of O×K isomorphism to (OK ,+).
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Example. Zp, p > 2, e = 1, take r = 1. Then

Zp×
∼→ (Z/pZ)× × (1 + pZp) ∼= Z/(p− 1)Z× Zp

x 7→
(
x mod p,

x

[x mod p]

)
p = 2, take r = 2.

Z×2
∼→ (Z/4Z)× × (1 + p2Zp) ∼= Z/2Z× Z2

x 7→
(
x mod 4,

x

ε(x)

)
where

ε(x) =

{
+1 x ≡ 1 (mod 4)

−1 x ≡ −1 (mod 4)

So:

Zp×/(Zp×)2 ∼=

{
Z/2Z if p > 2

(Z/2Z)2 if p = 2
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14 Higher Ramification Groups

Let L/K be a finite Galois extension of local fields, and πL ∈ OL a uniformiser.

Definition 14.1 (s-th ramification group). Let vL be a normalised valuation in OL. For
s ∈ R≥−1, the s-th ramification group is

Gs(L/K) = {σ ∈ Gal(K) | vL(σ(x)− x) ≥ s+ 1 ∀x ∈ OL}.

Remark. Gs only changes at integers.
Gs, s ∈ R≥−1 used to define upper numbering.

Example.

G−1(L/K) = Gal(L/K)

G0(L/K) = {σ ∈ Gal(L/K) | σ(x) ≡ x mod πL ∀x ∈ OL}
= ker(Gal(L/K)� Gal(kL/k))

= IL/K

Note. For s ∈ Z≥0,

Gs(L/K) = ker(Gal(L/K)� Aut(OL/π
s+1
L OL))

hence Gs(L/K) is normal in G−1.

· · · ⊆ Gs ⊆ Gs−1 ⊆ · · · ⊆ G−1 = Gal(L/K).

Theorem 14.2.

(i) For s ≥ 1,
Gs = {σ ∈ G0 | vL(σ(πL)− πL) ≥ s+ 1}.

(ii)
⋂∞
n=0Gn = {1}.

(iii) Let s ∈ Z≥0. Then there exists an injective group homomorphism

Gs/Gs+1 ↪→ U
(s)
L /U

(s+1)
L

induced by σ 7→ σ(πL)
πL

. This map is independent of the choice of πL.

Proof. Let K0 ⊆ L be a maximal unramified extension of K in L. Upon replacing K by K0, we may
assume that L/K is totally ramified.
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(i) Theorem 13.8 implies OL/OK [πL]. Suppose vL(σ(πL)−πL) ≥ s+1. Let x ∈ OL, then x = f(πL),
f(X) ∈ OK [X].

σ(x)− x = σ(f(πL))− f(πL)

= f(σ(πL))− f(πL)

= (σ(πL)− πL)g(πL)

for some g(X) ∈ OK [X], using the fact that Xn − Y n = (X − Y )(Xn−1 + · · ·+ Y n−1). Thus

vL(σ(x)− x) = vL(σ(πL)− πL) + vL(g(πL))︸ ︷︷ ︸
≥0

≥ s+ 1.

(ii) Suppose σ ∈ Gal(L/K), σ 6= 1. Then σ(πL) 6= πL, because L = K(πL) and hence vL(σ(πL) −
πL) <∞. Thus σ /∈ Gs for some s� 0 by (i).

(iii) Note: for σ ∈ Gs, s ∈ Z≥0,
σ(πL) ∈ πL + πs+1

L OL

hence
σ(πL)

πL
∈ 1 + πsLOL = U

(s)
L .

We claim

ϕ : Gs → U
(s)
L /U

(s+1)
L

σ 7→ σ(πL)

πL

is a group homomorphism with kernel Gs+1. For σ, τ ∈ Gs, let τ(πL) = uπL, u ∈ O×L . Then

στ(πL)

πL
=
σ(τ(πL))

τ(πL)

τ(πL)

πL

=
σ(u)

u

σ(πL)

πL

τ(πL)

πL

But σ(u) ∈ u+ πs+1
L OL since σ ∈ Gs. Thus σ(u)

u ∈ U
(s+1)
L and hence

στ(πL)

πL
≡ σ(πL)

πL
· τ(πL)
πL

mod U
(s+1)
L .

Hence ϕ is a group homomorphism. Moreover,

ker(ϕ) = {σ ∈ Gs | σ(πL) ≡ πL mod πs+1
L } = Gs+1.

If π′L = aπL is another uniformiser, a ∈ O×L . Then

σ(π′L)

π′L
=
σ(a)

a
· σ(πL)

πL
≡ σ(πL)

πL
mod U

(s+1)
L .

71



Corollary 14.3. Gal(L/K) is solvable.
Lecture 18

Proof. By Proposition 13.11, Theorem 14.2 and Theorem 13.4, for s ∈ Z≥−1,

Gs/Gs+1
∼= a subgroup


Gal(kL/k) if s = −1

(k×L ,×) if s = 0

(kL,+) if s ≥ 1

Thus Gs/Gs+1 is solvable for s ≥ −1. Conclude using Theorem 14.2(ii).

Let characteristic k = p. Then p - |G0/G1| and |G1| = pn. Thus G1 is the unique (since normal) Sylow
p-subgroup of G0 = IL/K .

Definition 14.4. G1 is called the wild inertial group, and G0/G1 is called the tame quotient.

Suppose L/K is finite separable. Say L/K is tamely ramified if characteristic k - eL/K . Otherwise it
is wildly ramified.

Theorem 14.5. Assuming that:

• [K : Qp] <∞

• L/K finite

• DL/K = (πδ(L/K))

Then δ(L/K) ≥ eL/K − 1, with equality if and only if tamely ramified. In particular, L/K
unramified if and only if DL/K = OL.

Proof. Example Sheet 3 shows DL/K = DL/K0
·DK0/K . Suffices to check 2 cases:

(i) L/K unramified. Then ?? gives that OL = OK [α], for some α ∈ OL with kL = k(a).
Let g(X) ∈ OK [X] be the minimal polynomial of α. Since [L : K] = [kL : k], we have that
g(X) ∈ k[X] is the minimal polynomial of a. g(X) separable and hence g′(α) 6≡ 0 (mod π)L.
Theorem 12.8 implies DL/K = (g(α)) = OL.

(ii) L/K totally ramified. Say [L : K] = e, OL = OK [πL], πL a root of

g(X) = Xe +

e−1∑
i=0

aiX
i ∈ OK [X]
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is Eisenstein. Then

g′(πL) = eπe−1L︸ ︷︷ ︸
≥e−1

+

e−1∑
i=1

iaiπ
i−1
L︸ ︷︷ ︸

vL≥e

.

Thus vL(y′(πL)) ≥ e− 1. Equality if and only if p - e.

Corollary 14.6. Suppose L/K is an extension of number fields. Let P ⊆ OL, P ∩ OK = p.
Then e(P/p) > 1 if and only if P | DL/K .

Proof. Theorem 12.9 implies DL/K =
∏
P DLP /Kp

. Then use e(P/p) = eLP /Kp
and Theorem 14.5.

Example. • K = Qp, ζpn a primitive pn-th root of unity. L = Qp(ζpn). The pn-th
cyclotomic polynomial is

Φpn(X) = Xpn−1(p−1) +Xpn−1(p−2) + · · ·+ 1 ∈ Zp[X].

See Example Sheet 3.

• Φpn(X) irreducible (hence Φpn(X) is the minimal polynomial of ζpn).

• L/Qp is Galois, totally ramified of degree pn+1(p− 1).

• π := ζpn − 1 a uniformiser in OL  OL = Zp[ζpn − 1] = Zp[ζpn ].

• Gal(L/Qp)
∼→ (Z/pnZ)× (abelian). σm ↔ m where σm(ζpn) = ζmpn .

vL(σm(π)− π) = vL(ζ
m
pn − ζpn) = vL(ζ

m−1
pn − 1).

Let k be maximal such that pk | m − 1. Then ζm−1pn is a primitive pn−k-th root of unity,
and hence ζm−1pn − 1 is a uniformiser π′ in L′ = Qp(ζm−1pn ). Hence

vL(ζ
m−1
pn − 1) = eL/L′ =

eL/Qp

eL′/Qp

=
[L : Qp]
[L′ : Qp]

=
pn−1(p− 1)

pn−k−1(p− 1)
= pk.

Theorem 14.2(i) implies that σm ∈ Gi if and only if pk ≥ i+ 1. Thus

Gi ∼=


(Z/pnZ)× i ≤ 0

(1 + pkZ)/pnZ pk−1 − 1 < i ≤ pk − 1(1 ≤ k ≤ i+ 1)

{1} pn−1 − 1 < i

.
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Part VI

Local Class Field Theory
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15 Infinite Galois Theory

Definition 15.1 (Infinite Galois definitions). • L/K is separable if ∀α ∈ L, the minimal
polynomial fα(X) ∈ K[X] for α is separable.

• L/K is normal if fα(X) splits in L for all α ∈ L.

• L/K is Galois if it is separable and normal. Write Gal(L/K) := AutK(L) in this case. If
L/K is a finite Galois extension, then we have a Galois correspondence:

{subextensions K ⊆ K ′ ⊆ L} ↔ {subgroups of Gal(L/K)}
K ′ 7→ Gal(K/K ′)

Let (I,≤) be a poset. Say I is a directed set if for all i, j ∈ I, there exists k ∈ I such that i ≤ k, j ≤ k.

Example.

• Any total order (for example (N,≤)).

• N≥1 ordered by divisibility.

Definition 15.2. Let (I,≤) be a directed set and (Gi)i∈I a collection of groups together with
maps ϕij : Gj → Gi, i ≤ j such that:

• ϕik = ϕij ◦ ϕjk for any i ≤ j ≤ k

• ϕii = id

Say ((Gi)i=1, ϕij) is an inverse system. The inverse limit of (Gi, ϕi) is

lim
←−

i

Gi = {(gi)i∈I ∈
∏
i∈I

Gi | ϕij(gj) = gi}.

Remark.

• (N,≤) recovers the previous set.

• There exist projection maps ϕj : lim←−
i∈I

Gi → Gj .

• lim
←−
i∈I

Gi satisfies a universal property.

• Assume Gi finite. Then the profinite topology on lim
←−
i∈I

Gi is the weakest topology such that

ϕj are continuous for all j ∈ I.
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Proposition 15.3. Assuming that:

• L/K Galois

Then

(i) The set I = {F/Kfinite | F ⊆ L, F Galois} is a directed set under ⊆.

(ii) For F, F ′ ∈ I, F ⊆ F ′ there is a restriction map resF,F ′ : Gal(F ′/K) � Gal(F/K) and
the natural map

Gal(L/K) → lim
←−
F∈I

Gal(F/K)

is an isomorphism.

Proof. Example Sheet 4.
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