%! TEX root = LC.tex % vim: tw=50 % 25/11/2024 11AM Suppose given a sequence $x_0, x_1, \ldots, x_{n - 1}$ of natural numbers. We want numbers $m + 1, 2m + 1, \ldots, nm + 1$ to serve as moduli, with $x_i < (i + 1)m + 1$, and all of which are pairwise coprime. If we can find $m$ such that these conditions hold, then there is a number $a$ such that $a \equiv x_i \pmod{(i + 1)m + 1}$. Taking $m = \max(n, x_0, \ldots, x_{m - 1})!$ works. We say that the pair $(a, m)$ \emph{codes} the sequence. \begin{fcdefn}[beta indexing] The function $\beta : \Nbb^2 \to \Nbb$ is defined by $\beta(x, i) = a \% (m(i + 1) + 1)$, where $a$ and $m$ are the unique numbers such that $x = \langle a, m \rangle$. \end{fcdefn} \begin{remark*} The forumula $\beta(x, y) = z$ is given in \gls{PA} by a $\delz$-formula. We will use the notation $(x)_i$ for $\beta(x, i)$; thus the decoding property is that $(x)_i = x_i$ if $x = \langle a, m \rangle$ codes $x_0, \ldots, x_{n - 1}$. \end{remark*} \begin{fclemma}[Godel's Lemma] \label{lemma:2.2.9} % Lemma 2.2.9 Assuming: - $\mathcal{M} \models \PA$ - $n \in \Nbb$ - $x_0, \ldots, x_{n - 1} \in \mathcal{M}$ Then: there is $u \in M$ such that $\mathcal{M} \models (u)_i = x_i$ for all $i < n$. \end{fclemma} \begin{fcthm}[] \label{thm:2.2.10} % Theorem 2.2.10 Assuming: - $f : \Nbb^k \to \Nbb$ a partial function Then: \begin{iffc} \lhs $f$ is recursive \rhs there is a $\sigone$-formula $\theta(\ol{x}, y)$ such that $y = f(\ol{x}) \iff \Nbb \models \theta(\ol{x}, y)$. \end{iffc} \end{fcthm} \begin{proof} \begin{enumerate}[$\Rightarrow$] \item[$\Leftarrow$] Suppose that $y = f(\ol{x})$ is $\sigone$-definable by $\theta(\ol{x}, y) \defeq \exists \ol{z} . \varphi(\ol{x}, y, \ol{z})$ (so $\varphi \in \delz$). \newcommand\first{\mathrm{first}} The function $\first(x) = (\mu y \le x) . \exists z \le x . (x = \langle y, z \rangle)$ is \gls{primrecive}. By \gls{minon}, the function \[ g(\ol{x}) = \mu z . (\exists v, \ol{w} \le z . (z = \langle v, \ol{w} \rangle \wedge \varphi (\ol{x}, v, \ol{w}))) \] is \gls{pr}. Since $\langle v, \ol{w} \rangle = \langle v, \langle \ol{w} \rangle \rangle$ for tuples $\ol{w}$, we have that $\first(\langle v, \ol{w} \rangle) = v$. Thus \[ \first(g(\ol{x})) = \begin{cases} \text{The least $y$ such that $\Nbb \models \theta(\ol{x}, y)$} & \text{if there is such $y$} \\ \text{undefined} & \text{otherwise} \end{cases} \] as for each $\ol{x} \in \Nbb$ there is at most one $y$ such that $\Nbb \models \theta(\ol{x}, y)$. Now $\Nbb \models \theta(\ol{x}, y) \iff y = f(\ol{x})$, so $f(\ol{x}) = \first(g(\ol{x}))$ whenever defined. So $f$ is \gls{pr}. \item[$\Rightarrow$] We will show that the class of all functions with $\sigone$-graphs contains the basic functions and is closed under \gls{compon}, \gls{primrec}, and \gls{minon}. The graphs of zero, successor, and $i$-th projection are the formulae $y = 0$, $y = x + 1$, and $y = x_i$ respectively, so are $\sigone$-definable. If $f(x_1, \ldots, x_k)$ and $g_1(\ol{z}), \ldots, g_k(\ol{z})$ all have $\sigone$-graphs, then the graph of the composite is given by: \[ \exists u_1, \ldots, u_k . \bigwedge_{i = 1}^n (u_i = g_i(\ol{z}) \wedge y = f(u_1, \ldots, u_k)) .\] This is equal to a $\sigone$-formula, as those are closed under $\wedge, \exists$. If $f(\ol{x}, y)$ is obtained by \gls{primrec} \[ \begin{cases} f(\ol{x}, 0) = g(\ol{x}) \\ f(\ol{x}, y + 1) = h(\ol{x}, y, f(\ol{x}, y)) \end{cases} \] where $g$ and $h$ have $\sigone$-graphs, then we can use \nameref{lemma:2.2.9} to show that the graph of $f$ is given by \[ \exists u, v . (v = g(\ol{x}) \wedge (u)_0 = v \wedge (u)_y = z \wedge \forall i < y . \exists r, s . [r = (u)_i \wedge s = (u)_{i + 1} \wedge s = h(\ol{x}, i, r)] .\] We do this by coding the sequence $f(\ol{x}, 0), f(\ol{x}, 1), \ldots, f(\ol{x}, y)$ by $u$. This formula is equal to a $\sigone$-formula since: \begin{enumerate}[(1)] \item $z = (x)_y$ is $\delz$; \item If the graph of $h$ is defined by $\exists \ol{t} . \psi(\ol{x}, i, r, s, \ol{t})$ with $\psi \in \delz$, then \[ \forall i < y . \exists r, s [r = (u)_i \wedge s = (u)_{i + 1} \wedge s = h(\ol{x}, i, r)] \] is equal to \[ \exists w . \forall i < y . \exists r, s, \ol{t} \le w (r = (u)_i \wedge s = (u)_{i + 1} \wedge \psi(\ol{x}, i, r, s, \ol{t})) \] as we can take $w$ to be the maximum between suitable $r, s, \ol{t}$ with $r = (u)_i$, $s = (u)_{i + 1}$, $\psi(\ol{x}, i, r, s, \ol{t})$ with $i = 0, 1, \ldots, y - 1$. A similar argument gives closure under \gls{minon}. \end{enumerate}