%! TEX root = LC.tex % vim: tw=50 % 08/11/2024 11AM \begin{proof} \phantom{} \begin{enumerate}[(1)] \item Give $H_{\pnot \pnot} \defeq \{x \in H : \pnot \pnot x = x\}$ the inherited order, so that $\meet$, $\himplies$, $\bot$ and $\top$ (which are preserved by $\pnot \pnot$) remain the same. We just need to define disjunctions in $H_{\pnot \pnot}$ properly. Define $a \vee_{\pnot \pnot} b \defeq \pnot \pnot (a \join b)$ in $H$. It is easy to show that this gives $\sup \{a, b\}$ in $H_{\pnot \pnot}$ (as $\pnot \pnot$ preserves order), so $H_{\pnot \pnot}$ is a \gls{ha}. As every element of $H_{\pnot \pnot}$ is regular (i.e. $\pnot \pnot x = x$), it is a \gls{ba} (see Example Sheet 2). \item Given a \gls{hh} $g : H \to B$, where $B$ is a \gls{ba}, define $g_{\pnot \pnot} : H \to B$ as $g_{H_{\pnot \pnot}}$. It clearly preserves $\bot, \top, \meet, \himplies$, as those operations in $H_{\pnot \pnot}$ are inherited from $H$. But we also have \begin{align*} g_{\pnot \pnot}(a \join_{\pnot \pnot} b) &= g|_{H_{\pnot \pnot}} (\pnot \pnot (a \join b)) \\ &= \pnot \pnot (g(a) \join g(b)) \\ &= g(a) \join g(b) &&\text{$B$ is \glsref[ba]{Boolean}} \\ &= g_{\pnot \pnot} (a) \join g_{\pnot\pnot}(b) \end{align*} Thus $g_{\pnot \pnot}$ is a morphism of \glspl{ba}. Note that any $x \in H$ provides an element $\pnot \pnot x \in H_{\pnot \pnot}$, since $\pnot \pnot \pnot \pnot x = \pnot \pnot x$ in $H$. Additionally, \begin{align*} g_{\pnot \pnot}(\pnot \pnot x) &= g(\pnot \pnot x) \\ &= \pnot \pnot g(x) \\ &= g(x) \end{align*} for all $x \in H$ (as $g(x)$ is in a \gls{ba}). Now, if $h : H_{\pnot \pnot} \to B$ is a morphism of \glspl{ba} with $g(x) = h(\pnot \pnot x)$ for all $x \in H$, then $h(a) = h(\pnot \pnot a) = g(a) = g_{\pnot \pnot}(a)$ for all $a \in H$. So $g_{\pnot \pnot}$ is unique with this property. \qedhere \end{enumerate} \end{proof} In particular, if $S$ is a set, then $\F^{\text{Heyt}}(S)_{\pnot \pnot} \cong \F^{\text{Bool}}(S)$. \begin{fcthm}[Glivenko's Theorem] % Theorem 1.5.4 Assuming: - $\varphi$ and $\psi$ are propositions Then: \begin{iffc} \lhs $\syn_{\text{CPC}} \varphi \to \psi$ \rhs $\syn_{\text{\gls{ipc}}} \pnot \pnot \varphi \to \pnot \pnot \psi$. \end{iffc} \end{fcthm} \begin{iffproof} \rightimpl If $\syn_{\text{CPC}} \varphi \to \psi$, then $\top \le \varphi \to \psi$ in $\F^{\text{Bool}}(L) = \F^{\text{Heyt}}(L)_{\pnot \pnot}$. As the inclusion $i : \F^{\text{Heyt}}(L)_{\pnot \pnot} \to \F^{\text{Heyt}}(L)$ strictly preserves $\le$ and $\to$, it follows that \begin{align*} i(\top) &\le i(\varphi \to \psi) \\ &= \varphi \to \psi \\ &= \pnot \pnot (\varphi \to \psi) &&\text{as $\varphi \to \psi \in \F^{\text{Heyt}}(L)_{\pnot \pnot}$} \\ &= \pnot \pnot \varphi \to \pnot \pnot \psi \end{align*} in $\F^{\text{Heyt}}(L)$, so $\syn_{\text{\gls{ipc}}} \pnot \pnot \varphi \to \pnot \pnot \psi$. \leftimpl Obvious. \end{iffproof} \begin{fccoro}[] % Corollary 1.5.5 Assuming: - $\varphi$ a proposition Then: \begin{iffc} \lhs $\syn_{\text{CPC}} \varphi$ \rhs $\syn_{\text{\gls{ipc}}} \varphi^N$. \end{iffc} \end{fccoro} \begin{proof} Induction over the complexity of formulae. \end{proof} \begin{fccoro}[] % Corollary 1.5.6 \begin{iffc} \lhs CPC is inconsistent \rhs \gls{ipc} is inconsistent. \end{iffc} \end{fccoro} \begin{iffproof} \rightimpl If CPC is inconsistent, then there is $\varphi$ such that $\syn_{\text{CPC}} \varphi$ and $\syn_{\text{\gls{ipc}}} \pnot \varphi$. But then $\syn_{\text{\gls{ipc}}} \pnot \pnot \varphi$ and $\syn_{\text{\gls{ipc}}} \pnot \varphi$, so $\syn_{\text{\gls{ipc}}} \bot$. \leftimpl Obvious. \qedhere \end{iffproof} \newpage \section{Computability} ``If a `religion' is defined to be a system of ideas that contains improvable statements, then G\"odel taught us that mathematics is not only a religion; it is the only religion that can prove itself to be on.'' -- John Barrow \subsection{Recursive functions and \texorpdfstring{$\lambda$}{λ}-computability} \begin{fcdefn}[Partial recursive function] \glsnoundefn{prf}{partial recursive function}{partial recursive functions}% \glsadjdefn{pr}{partial recursive}{function}% \glsadjdefn{tr}{total recursive}{function}% \glsnoundefn{proj}{projection}{projections}% \glsnoundefn{succ}{successor}{successors}% \glsnoundefn{zero}{zero}{NA}% \glsnoundefn{compon}{composition}{compositions}% \glsnoundefn{primrec}{primitive recursion}{primitive recursions}% \glsnoundefn{primrecive}{primitive recursive}{primitive}% \glsnoundefn{minon}{minimisation}{minimisations}% % Definition 2.1.1 The class of recursive functions is the smallest class of partial functions of the form $\Nbb^k \to \Nbb$ that contains the basic functions: \begin{citems} \item Projections: $\Pi_i^m : (n_1, \ldots, n_m) \mapsto n_i$; \item Successor: $S^+ : n \mapsto n + 1$; \item Zero: $z : n \mapsto 0$ \end{citems} and is closed under: \begin{citems} \item Compositions: if $g : \Nbb^k \to \Nbb$ is partial recursive and so are $h_1, \ldots, h_k : \Nbb^m \to \Nbb$, then the function $f : \Nbb^m \to \Nbb$ given by $f(\ol{n}) = g(h_1(\ol{n}), \ldots, h_k(\ol{n}))$ is partial recursive. \item Primitive recursion: Given partial recursive functions $g : \Nbb^m \to \Nbb$ and $h : \Nbb^{m + 2} \to \Nbb$, the function $f : \Nbb^{m + 1} \to \Nbb$ defined by \[ \begin{cases} f(0, \ol{n}) \defeq g(\ol{n}) \\ f(k + 1, \ol{n}) \defeq h(f(k, \ol{n}), k, \ol{n}) \end{cases} \] \item Minimisation: Suppose $g : \Nbb^{m + 1} \to \Nbb$ is partial recursive. Then the function $f : \Nbb^m \to \Nbb$ that maps $\ol{n}$ to the least $n$ such that $g(n, \ol{n}) = 0$ (if it exists) is partial recursive. Notation: $f(\ol{n}) = \mu n . g(n, \ol{n}) = 0$. \end{citems} The class of functions produced by the same conditions but excluding minimisation is called the class of \emph{primitive recursive} functions. A partial recursive function that is defined everywhere is called a \emph{total recursive} function. \end{fcdefn}