%! TEX root = LC.tex % vim: tw=50 % 06/11/2024 11AM \begin{proof}[Proof (sketch)] Let $S$ be the set of all \gls{primef} \glspl{filt} of $H$, ordered by inclusion. We write $F \forces p$ if and only if $v(p) \in F$ for primitive propositions $p$. We prove by induction that $F \forces \varphi$ if and only if $v(\varphi) \in F$ for arbitrary propositions. For the implication case, say that $F \forces (\psi \to \psi')$ and $v(\psi \to \psi') = [v(\psi) \himplies v(\psi')] \notin F$. Let $G'$ be the least \gls{filt} containing $F$ and $v(\psi)$. Then \[ G' = \{b : (\exists f \in F) (f \meet v(\psi) \le b)\} .\] Note that $v(\psi') \notin G'$, or else $f \meet v(\psi) \le v(\psi')$ for some $f \in F$, whence $f \le v(\psi \to \psi')$ and so $v(\psi \to \psi') \in F$ (as $F$ is a terminal segment). In particular, $G'$ is \gls{propf}. So let $G$ be a \gls{primef} \gls{filt} extending $G'$ that does not contain $v(\psi')$ (exists by Zorn's lemma). By the induction hypothesis, $G \forces \psi$, and since $F \forces (\psi \to \psi')$ and $G'$ (this $G$) contains $F$, we have that $G \forces \psi'$. But then $v(\psi') \in G$, contradiction. This settles that $F \forces (\psi \to \psi')$ implies $v(\psi \to \psi') \in F$. Conversely, say that $v(\psi \to \psi') \in F \subseteq G \forces \psi$. By the induction hypothesis, $v(\psi) \in G$, and so $v(\psi) \himplies v(\psi) \in G$ (as $F \subseteq G$). But then $v(\psi') \ge v(\psi) \meet (v(\psi) \himplies v(\psi')) \in G$, as $G$ is a \gls{filt}. So the induction hypothesis gives $G \forces \psi'$, as needed. The cases for the other connectives are easy ($\por$ needs primality). So $(S, \le, \forces)$ is a \gls{km}. Want to show that $v \hmodels \varphi$ if and only if $S \forces \varphi$, for each $\varphi$. Conversely, say $S \forces \varphi$, but $v \not\hmodels \varphi$. Since $v(\varphi) \neq \top$, there must be a \gls{propf} \gls{filt} that does not contain it. We can extend it to a \gls{primef} \gls{filt} $G$ that does not contain it, but then $G \not\forces \varphi$, contradiction. \end{proof} \begin{fcthm}[Completeness of the Kripke semantics] % Theorem 1.4.20 Assuming: - $\varphi$ a proposition Then: \begin{iffc} \lhs $\Gamma \syn_{\text{\gls{ipc}}} \varphi$ \rhs for all \glspl{km} $(S, \le, \forces)$, the condition $S \forces \Gamma$ implies $S \forces \varphi$. \end{iffc} \end{fcthm} \begin{proof} \textbf{Soundness:} induction over the complexity of $\varphi$. \textbf{Adequacy:} Say $\Gamma \not \syn_{\text{\gls{ipc}}} \varphi$. Then $v \hmodels \Gamma$ but $v \not \hmodels \varphi$ for some \gls{ha} $H$ and \gls{hvalt} $v$ (\cref{thm:1.4.12}). But then \cref{lemma:1.4.19} applied to $H$and $v$ provides a \gls{km} $(S, \le, \forces)$ such that $S \forces \Gamma$, but $S\not\forces \varphi$, contradicting the hypothesis on every \gls{km}. \end{proof} \subsection{Negative translations} \begin{fcdefn}[Double-negation translation] % Definition 1.5.1 We recursively define the $\pnot\pnot$-translation $\varphi^N$ of a proposition $\varphi$ in the following way: \begin{citems} \item If $p$ is a primitive proposition, then $p^N \defeq \pnot \pnot p$; \item $(\varphi \pand \psi)^N \defeq \varphi^N \pand \psi^N$ \item $(\varphi \to \psi)^N \defeq \varphi^N \to \psi^N$ \item $(\varphi \por \psi)^N \defeq \pnot (\pnot \varphi^N \pand \pnot \psi^N)$ \item $(\pnot \varphi)^N \defeq \pnot \varphi^N$ \end{citems} \end{fcdefn} \begin{fclemma}[] % Lemma 1.5.2 Assuming: - $H$ a \gls{ha} Then: the map $\pnot \pnot : H \to H$ preserves $\pand$ and $\himplies$. \end{fclemma} \begin{proof} Example Sheet 2. \end{proof} \begin{fclemma}[Regularisation] % Lemma 1.5.3 Assuming: - $H$ a \gls{ha} Thens:[(1)] - The subset $H_{\pnot \pnot} \defeq \{x \in H : \pnot \pnot x = x\}$ is a \gls{ba}; - For every \gls{hh} $g : H \to B$ into a \gls{ba}, there is a unique map of \glspl{ba} $g_{\pnot \pnot} :H_{\pnot \pnot} \to B$ such that $g(x) = g_{\pnot \pnot}(\pnot \pnot x)$ for all $x \in H$. \end{fclemma}