%! TEX root = LC.tex % vim: tw=50 % 04/11/2024 11AM \begin{fcdefn}[Forcing relation] % Definition 1.4.15 Let $(S, \le, \forces)$ be a \gls{km} for a propositional language. We define the extended \gls{forcing} relation inductively as follows: \begin{citems} \item There is no $s \in S$ with $s \forces \false$; \item $s \forces \varphi \pand \psi$ if and only if $s \forces \varphi$ and $s \forces \psi$; \item $s \forces \varphi \por \psi$ if and only if $s \forces \varphi$ or $s \forces \psi$; \item $s \forces (\varphi \to \psi)$ if and only if $s' \forces \varphi$ implies $s' \forces \psi$ for every $s' \ge s$. \end{citems} \end{fcdefn} It is easy to check that the \gls{pers} property extends to arbitrary propositions. Moreover: \begin{itemize} \item $s \forces \pnot \varphi$ if and only if $s' \not\forces \varphi$ for all $s' \ge s$. \item $s \forces \pnot \pnot \varphi$ if and only if for every $s' \ge s$, there exists $s'' \ge s'$ with $s'' \forces \varphi$. \end{itemize} \begin{notation*} \glssymboldefn{wforces}% $S \Vdash \varphi$ for $\varphi$ a proposition if all worlds in $S$ \gls{force} $\varphi$. \end{notation*} \begin{example} % Example 1.4.16 Consider the following \glspl{km}: \begin{enumerate}[(1)] \item \begin{picmath} \begin{tikzcd} s' \forces p \ar[d, no head] \\ s \end{tikzcd} \end{picmath} \item \begin{picmath} \begin{tikzcd} s' \ar[rd, no head] & & s'' \forces p \ar[ld, no head] \\ & s \end{tikzcd} \end{picmath} \item \begin{picmath} \begin{tikzcd} s' \forces p, \forces q \ar[d, no head] \\ s \end{tikzcd} \end{picmath} \end{enumerate} In (1), we have $s \not\forces \pnot p$, since $s' \ge s$ and $s' \forces p$. We also know that $s \not\forces p$, thus $s \not\forces p \por \pnot p$. It is also the case that $s \forces \pnot \pnot p$, yet $s \not \forces p$, so $s\not\forces(\pnot \pnot p \to p)$ either. In (2), $s \not\forces \pnot \pnot p$ since $s' \ge s$ can't access a world that \glspl{force} $p$. Also $s \not \forces \pnot p$ either, as $s'' \ge s$ \glspl{force} $p$. So $s \not\forces \pnot \pnot p \por \pnot p$. In (3), $s\not\forces (p \to q) \to (\pnot p \por q)$. All \glspl{world} \gls{force} $p \to q$, and $s \not\forces q$. So to check the claim we just need to verify that $s\not\forces \pnot p$. But that is the case, as $s' \ge s$ and $s' \forces p$. \end{example} \begin{fcdefn}[Filter] \glsnoundefn{filt}{filter}{filters}% % Definition 1.4.17 A \emph{filter} $F$ on a \gls{latt} $L$ is a subset of $L$ with the following properties: \begin{citems} \item $F \neq \emptyset$ \item $F$ is a \gls{tseg} of $L$ (i.e., if $f \le x$ and $f \in F$, then $x \in F$) \item $F$ is closed under finite meets \end{citems} \end{fcdefn} \begin{example} % Example 1.4.18 \phantom{} \begin{enumerate}[(1)] \item \glsadjdefn{princf}{principal}{\gls{filt}}% Given an element $j \in I$ of a set $I$, then the family $F_j$ of all subsets of $I$ containing $j$ is a \gls{filt} on $\mathcal{P}(I)$. Such a \gls{filt} is called a \emph{principal filter}. \item The family of all cofinite subsets of $I$ is a filter on $\mathcal{P}(I)$, the Fr\'echet \gls{filt}. Exercise: a maximal \gls{propf} \gls{filt} (known as an \emph{ultra filter}) is not \gls{princf} if and only if it contains the Fr\'echet \gls{filt}. \item The family of all subsets of $[0, 1]$ with Lebesgue measure $1$ is a \gls{filt}. \end{enumerate} \end{example} \glsadjdefn{propf}{proper}{\gls{filt}}% A \gls{filt} is \emph{proper} if $F \neq L$. \glsadjdefn{primef}{prime}{\gls{filt}}% A \gls{filt} $F$ on a \gls{ha} is \emph{prime} if it is \gls{propf} and satisfies: whenever $(x \por y) \in F$, we can conclude that $x \in F$ or $y \in F$. If $F$ is a \gls{propf} \gls{filt} and $x \notin F$, then there is a \gls{primef} \gls{filt} extending $F$ that still doesn't contain $x$ (by Zorn's Lemma). \begin{fclemma}[] \label{lemma:1.4.19} % Lemma 1.4.19 Assuming: - $H$ a \gls{ha} - $v$ a \gls{hvalt} Then: \begin{iffc} \lhs there is a \gls{km} $(S, \le, \forces)$ such that $v \hmodels \varphi$ \rhs $S \wforces \varphi$, for every proposition $\varphi$. \end{iffc} \end{fclemma}