%! TEX root = LC.tex % vim: tw=50 % 01/11/2024 11AM \begin{fclemma}[] \label{lemma:1.4.11} % Lemma 1.4.11 The \gls{ltalg} of any theory relative to \gls{ipc} is a \gls{ha}. \end{fclemma} \begin{proof} We already saw that $\F^{\text{\gls{ipc}}}(T)$ is a \gls{dist} \gls{latt}, so it remains to show that $[\varphi] \himplies [\psi] \defeq [\varphi \to \psi]$ gives a Heyting implication, and that $\F^{\text{\gls{ipc}}}(T)$ is \gls{bdd}. Suppose that $[\varphi \pand [\psi] \le [\chi]$, i.e. $\tau, \varphi \pand \psi \syn_{\text{\gls{ipc}}} \chi$. We want to show that $[\varphi] \le [\psi \to \chi]$, i.e. $\tau, \varphi \syn (\psi \to \chi)$. But that is clear: \begin{logicproof} \varphi \qquad \ass{\psi} \\ \varphi \pand \psi \\(hyp) \chi \\($\to$-I, $\psi$) \psi \to \chi \end{logicproof} Conversely, if $\tau, \varphi \syn (\psi \to \chi)$, then we can prove $\tau, \varphi \pand \psi \syn \chi$: \begin{logicproof} \varphi \pand \psi \\($\pand$-E) \varphi \qquad \psi \\(hyp) \psi \to \chi \qquad \psi \\($\to$-E) \chi \end{logicproof} So defining $[\varphi] \himplies [\psi] \defeq [\varphi \to \psi]$ provides a Heyting $\himplies$. The bottom element of $\F^{\text{\gls{ipc}}}(T)$ is just $[\bot]$: if $[\varphi]$ is any element, then $T, \bot \syn_{\text{\gls{ipc}}} \varphi$ by $\false$-E. The top element is $\top \defeq [\bot \to \bot$: if $\varphi$ is any proposition, then $[\varphi] \le [\bot \to \bot]$ via \begin{logicproof} \varphi \qquad \ass{\bot} \\($\bot$-E) \bot \\ \bot \to \bot \end{logicproof} \vspace{-3em} \qedhere \end{proof} \begin{fcthm}[Completeness of the Heyting semantics] \label{thm:1.4.12} % Theorem 1.4.12 \begin{iffc} \lhs A proposition is provable in \gls{ipc} \rhs it is \gls{hvalid} for every \gls{ha} $H$. \end{iffc} \end{fcthm} \begin{proof} One direction is easy: if $\syn_{\text{\gls{ipc}}} \varphi$, then there is a derivation in \gls{ipc}, thus $\top \le v(\varphi)$ for any \gls{ha} $H$ and \gls{valt} $v$, by \nameref{hssoundness}. But then $v(\varphi) = \top$ and $\varphi$ is \gls{hvalid}. For the other direction, consider the \gls{ltalg} $\F(L)$ of the empty theory relative to \gls{ipc}, which is a \gls{ha} by \cref{lemma:1.4.11}. We can define a \gls{valt} $v$ by extending $P \to \F(L)$, $p \mapsto [p]$ to all propositions. As $v$ is a \gls{valt}, it follows by induction (and the construction of $\F(L)$) that $v(\varphi) = [\varphi]$ for all propositions. Now $\varphi$ is valid in every \gls{ha}, and so is valid in $\F(L)$ in particular. So $v(\varphi) = \top = [\varphi]$, hence $\top \to \top \syn_{\text{\gls{ipc}}} \varphi$, hence $\syn_{\text{\gls{ipc}}} \varphi$. \end{proof} \glsnoundefn{pups}{principal up-set}{principal up-sets}% \glssymboldefn{pups}% Given a poset $S$, we can construct sets $a\uparrow \defeq \{s \in S : a \le s\}$ called \emph{principal up-sets}. \glsnoundefn{tseg}{terminal segment}{terminal segments}% Recall that $U \subseteq S$ is a \emph{terminal segment} if $a\uparrow \subseteq U$ for each $a \in U$. \begin{fcprop} \glssymboldefn{tsegs}% % Proposition 1.4.13 If $S$ is a poset, then the set $T(S) = \{U \subseteq S : \text{$U$ is a terminal segment of $S$}\}$ can be made into a \gls{ha}. \end{fcprop} \begin{proof} Order the \glspl{tseg} by $\subseteq$. Meets and joins are $\cap$ and $\cup$, so we just need to define $\himplies$. If $U, V \in \tsegs(S)$, define $(U \himplies V) \defeq \{s \in S : (s\pups) \cap U \subseteq V\}$. If $U, V, W \in \tsegs(S)$, we have \[ W \subseteq (U \himplies V) \qquad \iff \qquad (w \pups) \cap U \subseteq V \forall w \in W ,\] which happens if for every $w \in W$ and $u \in U$ we have $w \le u \implies u \in V$. But $W$ is a \gls{tseg}, so this is the same as saying that $W \cap U \subseteq V$. \end{proof} \begin{fcdefn}[Kripke model] \glsnoundefn{km}{Kripke model}{Kripke models}% \glsnoundefn{world}{world}{worlds}% \glsnoundefn{state}{state}{states}% \glsnoundefn{forcing}{forcing}{NA}% \glsnoundefn{force}{force}{forces}% \glsadjdefn{pers}{persistence}{relation}% \glssymboldefn{forcing}% % Definition 1.4.14 Let $P$ be a set of primitive propositions. A \emph{Kripke model} is a tuple $(S, \le, \Vdash)$ where $(S, \le)$ is a poset (whose elements are called ``worlds'' or ``states'', and whose ordering is called the ``accessibility relation'') and $\Vdash \subseteq S \times P$ is a binary relation (``forcing'') satisfying the persistence property: if $p \in P$ is such that $s \Vdash p$ and $s \le s'$, then $s' \Vdash p$. \end{fcdefn} Every \gls{valt} $v$ on $\tsegs(S)$ induces a \gls{km} by setting $s \forces p$ is $s \in v(p)$.