Logic and Computability

Daniel Naylor

December 4, 2024

Contents

Lecture 1

1 Non-classical Logic

1.1 Intuitionistic Logic

Idea: a proof of $\varphi \to \psi$ is a "procedure" that comments a proof of φ into a proof of ψ .

In particular, $\neg\neg\varphi$ is not always the same as φ .

Fact: The law of excluded middle $(\varphi \lor \neg \varphi)$ is not generally intuitionistically valid.

Moreover, the Axiom of Choice is incompatible with intuitionistic set theory.

We take choice to mean that any family of inhabited sets admits a choice function.

Theorem 1.1.1 (Diaconescu)**.** The law of excluded middle can be intuitionistically deduced from the Axiom of Choice.

Proof. Let φ be a proposition. By the Axiom of Separation, the following are sets (i.e. we can construct a proof that they are sets):

$$
A := \{ x \in \{0, 1\} : \varphi \vee (x = 0) \} \qquad B := \{ x \in \{0, 1\} : \varphi \vee (x = 1) \}.
$$

As $0 \in A$ and $1 \in B$, we have that $\{A, B\}$ is a family of inhabited sets, thus admits a choice function $f: \{A, B\} \to A \cup B$ by the Axiom of Choice. This satisfies $f(A) \in A$ and $f(B) \in B$ by definition.

Thus we have

$$
(f(A) = 0 \lor \varphi) \land (f(B) = 1 \lor \varphi)
$$

and $f(A), f(B) \in \{0,1\}$. Now $f(A) \in \{0,1\}$ means that $(f(A) = 0) \vee (f(A) = 1)$ and similarly for $f(B)$.

We can have the following:

- (1) We have a proof of $f(A) = 1$, so $\varphi \vee (1 = 0)$ has a proof, so we must have a proof of φ .
- (2) We have a proof of $f(B) = 0$, which similarly gives a proof of φ .
- (3) We have $f(A) = 0$ and $f(B) = 1$, in which case we can prove ψ : given a proof of ϕ , we can prove that $A = B$ (by Extensionality), in which case $0 = f(A) = f(B) = 1$, a contradiction.

So we can always specify a proof of φ or a proof of φ or a proof of $\neg \varphi$.

 \Box

Why bother?

• Intuitionistic maths is more general: we assume less.

- • Several ntions that are conflated in classical maths are genuinely different constructively.
- Intuitionistic proofs have a computable content that may be absent in classical proofs.
- Intuitionistic logic is the internal logic of an arbitrary topos.

Let's try to formalise the BHK interpretation of logic.

We will inductively define a provability relation by enforcing rules that implement the BHK interpretation.

Lecture 2 We will use the notation $\Gamma \vdash \varphi$ to mean that φ is a consequence of the formulae in the set Γ .

Rules for Intuitionistic Propositional Calculus (IPC)

 $(\wedge$ -I) $\frac{\Gamma\vdash A,\Gamma\vdash B}{\Gamma\vdash A\wedge B}$ $(\vee-I)$ $\frac{\Gamma\vdash A}{\Gamma\vdash A\vee B}$, $\frac{\Gamma\vdash B}{\Gamma\vdash A\vee B}$ $(\wedge-E)$ $\frac{\Gamma\vdash A\wedge B}{\Gamma\vdash A}$ and $\frac{\Gamma\vdash A\wedge B}{\Gamma\vdash B}$ $(\vee E)$ $\frac{\Gamma, A \vdash C \Gamma, B \vdash C \Gamma \vdash A \vee B}{\Gamma \vdash C}$ $(\rightarrowtail I)$ $\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}$ $(\rightarrow E)$ $\frac{\Gamma \vdash A \rightarrow B, \Gamma \vdash A}{\Gamma \vdash B}$ $(\perp-E) \frac{\Gamma \vdash \perp}{\Gamma \vdash A}$ for any A (Ax) $\frac{}{\Gamma, A\vdash A}$ for any A (Weak) $\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$ (Contr) $\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$

We obtain classical propositional logic (CPC) by adding either:

\n- $$
\Gamma \vdash A \lor \neg A
$$
\n- $\Gamma \vdash A \vdash \bot$ (reductio ad absurdum)
\n

$$
By
$$

$$
\begin{array}{ll} [A] & [B] \\ \vdots & \vdots \\ X & Y \\ \hline C & (A, B) \end{array}
$$

we mean 'if we can prove X assuming A and we can prove Y assuming B, then we can infer C by "discharching / closing" the open assumptions A and B .

In particular, the $(\rightarrow I)$ -rule can be written as

$$
\Gamma, [A] \qquad \qquad \vdots
$$
\n
$$
\frac{B}{\Gamma \vdash A \to B} (A).
$$

We obtain intiuitionistic first-order logic (IQC) by adding rules for quantification:

- $(\exists -I)$ $\frac{\Gamma \vdash \varphi[x:=t]}{\Gamma \vdash \exists x.\varphi(x)}$, where t is a term.
- $(\exists E) \frac{\Gamma \vdash \exists x. \varphi \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi}$, if x is not free in Γ, ψ .
- $(\forall$ -I) $\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall x \ldots \varphi}$ if x is not free in Γ .
- $(\forall E) \frac{\Gamma \vdash \forall x \cdot \varphi(x)}{\Gamma \vdash \varphi[x:=t]},$ where t is a term.

Example 1.1.2. Let's give a natural deduction proof of $A \wedge B \to B \wedge A$.

$$
\frac{\frac{[A\wedge B]}{A}\quad \frac{[A\wedge B]}{B}}{A\wedge B\to B\wedge A}(A\wedge B).
$$

Example 1.1.3. Let's prove the Hilbert-style axioms $\varphi \to (\psi \to \varphi)$ and $(\varphi \to (\psi \to \chi)) \to$ $((\varphi \to psi) \to (\varphi \to \chi)).$

$$
\frac{\frac{[\varphi] - [\psi]}{\psi \to \varphi} (\psi)}{\varphi \to (\psi \to \varphi)} (\varphi)
$$
\n
$$
\frac{\frac{[\varphi] - [\psi]}{\varphi \to (\psi \to \varphi)] - [\varphi]} (\psi \to \psi)}{\chi} (\text{toE})
$$
\n
$$
\frac{\chi}{\frac{\varphi \to \chi}{\varphi \to \chi}} (\text{toE})
$$
\n
$$
\frac{\varphi \to \chi}{\frac{(\varphi \to \psi) \to (\varphi \to \chi)}{(\varphi \to (\psi \to \chi)) - ((\varphi \to \psi) \to (\varphi \to \chi))} (\text{toI}, (\varphi \to (\psi \to \chi))))}
$$

If Γ is a set of propositions in the language and φ is a poroposition, we write $\Gamma \vdash_{\text{IPC}} \varphi$, $\Gamma \vdash_{\text{IQC}} \varphi$, $\Gamma \vdash_{\text{CPC}} \varphi, \Gamma \vdash_{\text{CQC}} \varphi$, if there is a proof of φ from Γ in the respective logic.

Lemma 1.1.4. If $\Gamma \vdash_{\text{IPC}} \varphi$, then $\Gamma, \psi \vdash_{\text{IPC}} \varphi$ for any proposition ψ . Moreover, if p is a primitive proposition and ψ is any proposition, then

$$
\Gamma[p := \psi] \vdash_{\text{IPC}} \varphi[p := \psi].
$$

Proof. Induction over the size of proofs.

1.2 The simply typed λ**-calculus**

For now we assume given a set Π of *simple types* generated by a grammar

$$
\Pi := U|\Pi \to \Pi,
$$

Lecture 3 where U is a countable set of *type variables*, as well as an inifinite set V of variables.

Definition 1.2.1 (Simply typed lambda-term). The set Λ_{Π} of simply typed λ -terms is defined by the grammar

$$
\Lambda_{\Pi} := \underbrace{V}_{\text{variables}} \mid \underbrace{\lambda V: \Pi.\Lambda_{\Pi}}_{\lambda\text{-abstraction}} \mid \underbrace{\Lambda_{\Pi}\Lambda_{\Pi}}_{\lambda\text{-application}}\;.
$$

A *context* is a set of pairs $\{x_1 : \tau_1, \ldots, x_n : \tau_n\}$ where the x_i are (distinct) variables and each $\tau_i \in \Pi$. We write C for the set of all possible contexts. Given a context $\Gamma \in C$, we also write Γ, $x : \tau$ for the context $\Gamma \cup \{x : \tau\}$ (if x dous not appear in Γ).

The domain of Γ is the set of variables that occur in it, and the range $|\Gamma|$ is the set of [types](#page-4-1) that it manifests.

Definition 1.2.2 (Typability relation). We define the *typability relation* $\Vdash\subseteq C\times\Lambda_{\Pi}\times\Pi$ via:

- (1) For every [context](#page-4-2) Γ , and variable x not occurring in Γ , and [type](#page-4-1) τ , we have Γ , $x : \tau \Vdash x : \tau$.
- (2)Let Γ be a [context,](#page-4-2) x a variable not occurring in Γ , and let $\sigma, \tau \in \Pi$ be [types,](#page-4-1) and M be a λ[-term.](#page-4-2) If Γ, $x : \sigma \Vdash M : \tau$, then $\Gamma \Vdash (\lambda x : \sigma.M) : (\sigma \to \tau)$.
- (3) Let Γ be a context, $\sigma, \tau \in \Pi$ be types, and $M, N \in \Lambda_{\Pi}$ be [terms.](#page-4-2) If $\Gamma \Vdash M : (\sigma \to \tau)$ and $\Gamma \Vdash N : \sigma$, then $\Gamma \Vdash (MN) : \tau$.

Notation. We will refer to the λ -calculus of Λ_{Π} with this [typability relation](#page-4-3) as $\lambda(\rightarrow)$.

A variable x occurring in a λ [-abstraction](#page-4-2) $\lambda x : \sigma.M$ is *bound*, and it is *free* otherwise. We say that [terms](#page-4-2) M and N are α -equivalent if they differ only in the names of the bound variables.

If M and N are λ [-terms](#page-4-2) and x is a variable, then we define the *substitution of* N for x in M by:

• $x[x := N] = N;$

- • $y[x := N] = y$ if $x \neq y$;
- $(PQ)[x := N] = P[x := N]Q[x := N]$ for λ [-terms](#page-4-2) P, Q ;
- $(\lambda y : \sigma.P)[x := N] = \lambda y : \sigma.P[x := N])$, where $x \neq y$ and y is not free in N.

Definition 1.2.3 (beta-reduction). The β-reduction relation is the smallest relation \rightarrow _β on Λ _Π closed under the following rules:

- • $(\lambda x : \sigma.P)Q \rightarrow_{\beta} P[x := Q],$ $(\lambda x : \sigma.P)Q \rightarrow_{\beta} P[x := Q],$ $(\lambda x : \sigma.P)Q \rightarrow_{\beta} P[x := Q],$
- if $P \to_{\beta} P'$, then for all variables x and types $\sigma \in \Pi$, we have $\lambda x : \sigma P \to_{\beta} \lambda x : \sigma P'$,
- $P \to_{\beta} P'$ and z as a λ [-term,](#page-4-2) then $PZ \to_{\beta} P'Z$ and $ZP \to_{\beta} ZP'$.

We also define β -equivalence \equiv_{β} as the smallest equivalence relation containing \rightarrow_{β} .

Example 1.2.4 (Informal). We have $(\lambda x : \mathbb{Z}.(\lambda y : \tau.x))Z \rightarrow_{\beta} (\lambda y : \tau.Z)$.

When we reduce $(\lambda x : \sigma.P)Q$, the term being reduced is called a β -redex, and the result is its β contraction.

Lemma 1.2.5 (Free variables lemma)**.** Assuming that:

• $\Gamma \Vdash M : \sigma$

Then

- (1) If $\Gamma \subseteq \Gamma'$, then $\Gamma' \Vdash M : \sigma$.
- (2) The free variables of M occur in Γ .
- (3) There is a context $\Gamma^* \subseteq \Gamma$ comprising exactly the free variables in M, with $\Gamma^* \Vdash M : \sigma$.

Proof. Exercise.

Lecture 4

Lemma 1.2.6 (Generation Lemma)**.**

- (1) For every variable x, [context](#page-4-2) Γ , and [type](#page-4-1) σ , if $\Gamma \Vdash x : \sigma$, then $x : \sigma \in \Gamma$;
- (2) If $\Gamma \Vdash (MN) : \sigma$, then there is a type τ such that $\Gamma \Vdash M : \tau \to \sigma$ and $\Gamma \Vdash N : \tau$;
- (3) If $\Gamma \Vdash (\lambda x.M) : \sigma$, then there are [types](#page-4-1) τ and ρ such that $\Gamma, x : \tau \Vdash M : \rho$ and $\sigma = (\tau \to \rho)$.

Lemma 1.2.7 (Substitution Lemma)**.**

- (1)If $\Gamma \Vdash M : \sigma$ and α is a [type](#page-4-1) variable, then $\Gamma[\alpha := \tau] \Vdash M : \sigma[\alpha := \tau]$ $\Gamma[\alpha := \tau] \Vdash M : \sigma[\alpha := \tau]$ $\Gamma[\alpha := \tau] \Vdash M : \sigma[\alpha := \tau]$;
- (2) If $\Gamma, x : \tau \Vdash M : \sigma$ and $\Gamma \Vdash M : \tau$, then $\Gamma \Vdash M[x \mathrel{\mathop:}= N] : \sigma$.

Proposition 1.2.8 (Subject reduction)**.** Assuming that:

- Γ \mathbb{H} $M : σ$
- $M \to_{\beta} N$
- Then $\Gamma \Vdash N : \sigma$.

Proof. By induction on the derivation of $M \rightarrow \beta N$, using [Lemma 1.2.6](#page-5-1) and [Lemma 1.2.7.](#page-6-0)

 \Box

Notation. We will write $M \rightarrow \beta N$ if M [reduces](#page-5-0) to N after (potentially multiple) β [-reductions.](#page-5-0)

Theorem 1.2.9 (Church-Rosser for lambda(->)). Assuming that:

- $\Gamma \Vdash M : \sigma$
- $M \rightarrow_{\beta} N_1$
- $M \rightarrow_{\beta} N_2$

Then there is a λ [-term](#page-4-2) L such that $N_1 \rightarrow \beta$ L, $N_2 \rightarrow \beta$ L, and $\Gamma \Vdash L : \sigma$.

Pictorially:

Definition (β-normal form). A λ [-term](#page-4-2) M is in β-normal form if there is no [term](#page-4-2) N such that $M \rightarrow_{\beta} N$.

Corollary1.2.10 (Uniqueness of normal form). If a [simply typed](#page-4-2) λ -term admits a β [-normal](#page-6-2) [form,](#page-6-2) then it is unique.

Proposition 1.2.11 (Uniqueness of types)**.**

- (1) If $\Gamma \Vdash M : \sigma$ and $\Gamma \Vdash M : \tau$, then $\sigma = \tau$.
- (2) If $\Gamma \Vdash M : \sigma, \Gamma \Vdash N : \tau$, and $M \equiv_{\beta} N$, then $\sigma = \tau$.

Proof.

- (1) Induction.
- (2) By the hypothesis and [Church-Rosser for lambda\(->\),](#page-6-3)there is a [term](#page-4-2) L which both M and N reduce to. By [Lemma 1.2.7,](#page-6-0) we have $\Gamma \Vdash L : \sigma$ and $\Gamma \Vdash L : \tau$, so $\sigma = \tau$ by (1). \Box

Example1.2.12. There is no way to assign a [type](#page-4-1) to $\lambda x : x \cdot x$. If x is of type τ , then in order to apply x to x, it has to be of type $\tau \to \sigma$ for some σ . But $\tau \neq \tau \to \sigma$.

Definition 1.2.13 (Height). The *height* function is the recursively defined map $h : \Pi \to \mathbb{N}$ that mapsa [type](#page-4-1) variable to 0, and a function type $\sigma \to \tau$ to $1 + \max(h(\sigma), h(\tau))$. We extend the height function from [types](#page-4-1) to β [-redexes](#page-5-2) by taking the height of its λ [-abstraction.](#page-4-2)

Not.: $(\lambda x : \sigma P^{\tau})^{\sigma \to \tau} R^{\sigma}$.

Theorem 1.2.14 (Weak normalisation for lambda(->)). Assuming that:

• $\Gamma \Vdash M : \sigma$

Then there is a finite [reduction](#page-5-0)path $M := M_0 \to_{\beta} M_1 \to_{\beta} M_2 \to_{\beta} \cdots \to_{\beta} M_n$, where M_n is in β [-normal form.](#page-6-2)

Proof ("Taming the Hydra"). The idea is to apply induction on the complexity of M. Define a function $m: \Lambda_{\Pi} \to \mathbb{N} \times \mathbb{N}$ by

$$
m(M) = \begin{cases} (0,0) & \text{if } M \text{ is in } \beta\text{-normal form} \\ (h(M), \text{redex}(M)) & \text{otherwise} \end{cases}
$$

where $h(M)$ is the greatest [height](#page-7-0) of a [redex](#page-5-2) in M, and redex (M) is the number of [redexes](#page-5-2) in M of that [height.](#page-7-0)

We will use induction over $\omega \times \omega$ to show that if M is typable, then it admits a reduction to β [-normal](#page-6-2) [form](#page-6-2).

Problem: [reductions](#page-5-0) can copy [redexes](#page-5-2) or create new ones.

Strategy: always [reduce](#page-5-0) the right most [redex](#page-5-2) of maximum [height.](#page-7-0)

We will argue that by following this strategy, any new [redexes](#page-5-2) we generate have to be lower than the Lecture 5 height of the [redex](#page-5-2) we picked to [reduce.](#page-5-0)

If $\Gamma \Vdash M : \sigma$ and M is already in β [-normal form,](#page-6-2) then claim is trivially true. If M is not in β -normal[form](#page-6-2), let Δ be the rightmost [redex](#page-5-2) of maximal [height](#page-7-0) h.

By reducing ∆, we may introduce copies of existing [redexes,](#page-5-2) or create new ones. Creation of new [redexes](#page-5-2) of Δ has to happen in one of the following ways:

(1) If Δ is of the form $(\lambda x : (\rho \to \mu) \dots x P^{\rho} \dots)(\lambda y : \rho Q^{\mu})^{P \to \mu}$, then it [reduces](#page-5-0) to $\dots(\lambda y : P^{\rho} \dots P^{\rho})$ $\rho \cdot Q^{\mu}$ $\rho \cdot Q^{\mu}$ $\rho \cdot Q^{\mu}$)^{$\rho \rightarrow \mu P^{\mu} \dots$, in which case there is a new [redex](#page-5-2) of [height](#page-7-0) $h(\rho \rightarrow \mu) < h$.}

- (2) We have $\Delta = (\lambda x : \tau.(\lambda y : \rho. R^{\mu}))P^{\tau}$ occuring in M in the scenario $\Delta^{\rho \rightarrow \mu} Q^{\rho}$. Say Δ [reduces](#page-5-0) to $\lambda y : \rho R_1^{\mu}$ $\lambda y : \rho R_1^{\mu}$ $\lambda y : \rho R_1^{\mu}$. Then we create a new [redex](#page-5-2) of [height](#page-7-0) $h(\rho \to \mu) < h(\tau \to (\rho \to \mu)) = h$.
- (3) The last possibility is that $\Delta = (\lambda x : (\rho \to \mu).x)(\lambda y : \rho.P^{\mu})$, and that it occurs in M as $\Delta^{\rho \to \mu} Q^{\rho}$. Reduction then gives the [redex](#page-5-2) $(\lambda y : \rho P^{\mu})^{\rho \to \mu} Q^{\rho}$ $(\lambda y : \rho P^{\mu})^{\rho \to \mu} Q^{\rho}$ $(\lambda y : \rho P^{\mu})^{\rho \to \mu} Q^{\rho}$ of [height](#page-7-0) $h(\rho \to \mu) < h$.

Nowe Δ itself is gone (lowering the count by 1), and we just showed that any newly created [redexes](#page-5-2) have [height](#page-7-0) $\langle h$.

If we have $\Delta = (\lambda x : \tau.P^{\rho})Q^{\tau}$ and P contains multiple free occurrences of x, then all the [redexes](#page-5-2) in Q are multiplied when performing β [-reduction.](#page-5-0)

However, our choice of Δ ensures that the [height](#page-7-0) of any such [redex](#page-5-2) in Q has height $\langle h \rangle$, as they occur to the right of Δ in M. It is this always the case that $m(M') < m(M)$ (in the lexicographic order), so by the induction hypothesis, M' can be reduced to β [-normal form](#page-6-2) (and thus so can M). \Box

Theorem 1.2.15 (Strong Normalisation for lambda(->))**.** Assuming that:

• $\Gamma \Vdash M : \sigma$

Then there is no infinite reduction sequence $M \to_{\beta} M_1 \to_{\beta} \cdots$.

Proof. See Example Sheet 1.

1.3 The Curry-Howard Correspondence

Propositions-as-types: idea is to think of φ as the "type of its proofs".

Theproperties of the ST λ C match the rules of [IPC](#page-2-0) rather precisely.

First we will show a correspondence between $\lambda(\rightarrow)$ and the implicational fragment [IPC](#page-2-0)(\rightarrow) of IPC that includes only the \rightarrow connective, the axiom scheme, and the $(\rightarrow -I)$ and $(\rightarrow -E)$ rules. We will later extend this to the whole of [IPC](#page-2-0) by introducing more complex types to $\lambda(\rightarrow)$.

Start with [IPC](#page-2-0)(\rightarrow) and build a ST λ C out of it whose set of type variables U is precisely the set of primtive propositions of the logic.

Lecture 6 Clearly, the set Π of types then matches the set of propositions in the logic.

Comment: $\lambda x : \sigma(Mx) \to_n M$ if x is not free in M.

Proposition 1.3.1 (Curry-Howard for $IPC(\rightarrow)$). Assuming that:

•Γ is a [context](#page-4-2) for $\lambda(\rightarrow)$

• φ a proposition

Then

- (1) If $\Gamma \Vdash M : \varphi$, then $|\Gamma| = {\tau \in \Pi : (x : \tau) \in \Gamma \text{ for some } x} \vdash_{\text{IPC}(\rightarrow)} \varphi$
- (2)If $\Gamma \vdash_{\text{IPC}(\rightarrow)}$, thene there is a [simply typed](#page-4-2) λ -term $M \in \lambda(\rightarrow)$ such that $\{(x_{\psi} : \psi) \mid \psi \in$ Γ } $\Vdash M : \varphi$.

Proof.

(1) We induct over the derivation of $\Gamma \Vdash M : \varphi$.

If x is a variable not occurring in Γ' and the derivation is of the form $\Gamma', x : \varphi \Vdash x : \varphi$, then we'resupposed to prove that $|\Gamma', x : \varphi| \vdash \varphi$ $|\Gamma', x : \varphi| \vdash \varphi$ $|\Gamma', x : \varphi| \vdash \varphi$. But that follows from $\varphi \vdash \varphi$ as $|\Gamma', x : \varphi| = |\Gamma'| \cup {\varphi}.$

If the derivation has M of the form $\lambda x : \sigma N$ and $\varphi = \sigma \to \tau$, then we must have $\Gamma, x : \sigma \Vdash N : \tau$.By the induction hypothesis, we have that $[\Gamma, x : \sigma] \vdash \tau$ $[\Gamma, x : \sigma] \vdash \tau$ $[\Gamma, x : \sigma] \vdash \tau$, i.e. $[\Gamma], \sigma \vdash \tau$. But then $[\Gamma] \vdash \sigma \rightarrow \tau$ by $(\rightarrow -I).$

If the derivation has the form $\Gamma \Vdash (PQ) : \varphi$, then we must have $\Gamma \Vdash P : (\sigma \to \varphi)$ and $\Gamma \Vdash Q : \sigma$.By the induction hypothesis, we have that $|\Gamma| \vdash \sigma \rightarrow \varphi$ and $|\Gamma| \vdash \sigma$, so $|\Gamma| \vdash \varphi$ by (\rightarrow -E).

(2) Again, we induct over the derivation of $\Gamma \vdash \varphi$. Write $\Delta = \{(x_{\psi} : \psi) \mid \psi \in \Gamma\}$. Then we only have a few ways to construct a proof at a given stage. Say the derivation is of the form $\Gamma, \varphi \vdash \varphi$. If $\varphi \in \Gamma$, then clearly $\Delta \Vdash x_{\varphi} : \varphi$, and if $\varphi \notin \Gamma$ then $\Delta, x_{\varphi} : \varphi \Vdash x_{\varphi} : \varphi$.

Suppose the derivation is at a stage of the form

$$
\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}.
$$

Then by the induction hypothesis, there ar λ [-terms](#page-4-2) M and N such that $\Delta \Vdash M : (\varphi \to \psi)$ and $\Delta \Vdash N : \varphi$, from which $\Delta \Vdash (MN) : \varphi$.

Finally, if the stage is given by

$$
\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi},
$$

then we have two subcases:

- If $\varphi \in \Gamma$, then the induction hypothesis gives $\Delta \Vdash M$: ψ for some term M. By weakening,we have $\Delta, x : \varphi \Vdash M : \psi$, where x does not occur in Δ . But then $\Delta \Vdash (\lambda x : \varphi.M) : (\varphi \to \psi)$ as needed.
- If $\varphi \notin \Gamma$, then the induction hypothesis gives $\Delta, x_{\varphi} : \varphi \Vdash M : \psi$ for some M, thus $\Delta \Vdash (\lambda x_{\varphi} : \varphi \Vdash M : \psi)$ $\varphi.M$: $(\varphi \to \psi)$ as needed.

Example 1.3.2. Let φ, ψ be primitive propositions. The λ [-term](#page-4-2)

$$
\lambda f: (\varphi \to \psi) \to \varphi \cdot \lambda: \varphi \to \psi. \widetilde{g\left(\underbrace{fg}_{\varphi}\right)}
$$

has type $((\varphi \to \psi) \to \varphi) \to ((\varphi \to \psi) \to \psi)$, and therefore encodes a proof of that proposition in $IPC(\rightarrow)$. $g: \varphi \to \psi, f: (\varphi \to \psi) \to \varphi.$

$$
\frac{g: [\varphi \to \psi] \quad f: [(\varphi \to \psi) \to \varphi]}{fg: \varphi \quad g: [\varphi \to \psi]} \quad \text{(toE)}
$$
\n
$$
\frac{g(fg): \psi}{\lambda g.g(fg): (\varphi \to \psi) \to \psi} \quad \text{(toI, } \varphi \to \psi)}
$$
\n
$$
\overline{\lambda f.\lambda g.g(fg): ((\varphi \to \psi) \to \varphi) \to ((\varphi \to \psi) \to \psi)} \quad \text{(toI, } (\varphi \to \psi) \to \varphi)
$$

Definition 1.3.3 (Full STlambdaC). The types of the full symply typed λ -calculus are generated by the following grammar:

 $\Pi := U | \Pi \to \Pi | \Pi \times \Pi | \Pi + \Pi | 0 | 1,$

where U is a set of type variables (usually countable). Its terms are given by Λ_{Π} given by:

 $\Lambda_{\Pi} := V | \lambda V : \Pi. \Lambda_{\Pi} | \Lambda_{\Pi} \Lambda_{\Pi} | \Pi_1(\Lambda_{\Pi}) | \Pi_2(\Lambda_{\Pi}) | \iota_1(\Lambda_{\Pi}) | \iota_2(\Lambda_{\Pi}) | \operatorname{case}(\Lambda_{\Pi}; V.\Lambda_{\Pi}; V.\Lambda_{\Pi}) | * |!_{\Pi} \Lambda_{\Pi},$

where V is an infinite set of variables, and $*$ is a constant.

Lecture 7

We have new typing rules:

- $\frac{\Gamma \Vdash M : \psi \times \varphi}{\Gamma \Vdash \pi_1(M) : \psi}$
- $\frac{\Gamma \Vdash M : \psi \times \varphi}{\Gamma \Vdash \pi_2(M) : \varphi}$
- $\frac{\Gamma \Vdash M : \psi}{\Gamma \Vdash \iota_1(M) : \psi + \varphi}$
- $\frac{\Gamma \Vdash N : \varphi}{\Gamma \Vdash \iota_2(N) : \psi + \varphi}$
- $\frac{\Gamma \Vdash M : \psi \quad \Gamma \Vdash N : \varphi}{\Gamma \Vdash \langle M, N \rangle : \varphi \times \psi}$
- $Γ \Vdash L : ψ + φ Γ , x : ψ \Vdash M : ρ Γ , y : φ \Vdash N : ρ$ $\Gamma \vDash \text{case}(L; x^{\psi}.M; x^{\varphi}.N)$
- $\overline{\Gamma \Vdash * : 1}$
- $\frac{\Gamma \Vdash M:0}{\Gamma \Vdash !_{\varphi} M:\varphi}$ for each $\varphi \in \Pi$

They come with new reduction rules:

- **Projections:** $\pi_1 \langle M, N \rangle \to_{\beta} M$ and $\pi_2 \langle M, N \rangle \to_{\beta} N$
- **Pairs:** $\langle \pi_1 M, \pi_2 M \rangle \rightarrow_\eta M$
- **Definition by cases:** $\text{case}(\iota_1(M); xK; y.L) \to_{\beta} K[x := M]$ and $\text{case}(\iota_2(M); x.K; y.L) \to_{\beta} K[x := M]$ $L[y := M]$
- **Unit:** If $\Gamma \Vdash M: 1$, then $M \to_{\eta}$ *

When setting up Curry-Howard with these new types, we let:

- \bullet 0 $\leftrightsquigarrow \perp$
- \bullet \times \leftrightarrow \wedge
- \bullet + $\leftrightarrow\lor$
- $\bullet \rightarrow \leftrightsquigarrow \rightarrow$

Example 1.3.4. Consider the following proof of $(\varphi \land \chi) \to (\psi \to \varphi)$:

$$
\frac{\frac{[\varphi \wedge \chi]}{\varphi} \qquad [\psi]}{(\varphi \wedge \chi) \rightarrow (\psi \rightarrow \varphi)} \qquad ()
$$

We decorate this proof by turning the assumptions into variables and following the Curry-Howard correspondence:

$$
\frac{\frac{[\varphi \wedge \chi]:p}{\varphi:\pi_1(p)} \quad [\psi]:b}{\psi \to \varphi: \lambda b: \psi.\pi_1(p)} \qquad ()
$$

$$
(\varphi \wedge \chi) \to (\psi \to \varphi) \qquad ()
$$

1.4 Semantics for IPC

Definition 1.4.1 (Lattice). A *lattice* is a set L equipped with binary commutative and associative operations \land and \lor that satisfy the absorption laws:

$$
a \vee (a \wedge b) = a; \qquad a \wedge (a \vee b) = a,
$$

for all $a, b \in L$. A lattice is:

- *Distributive* if $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ for all $a, b, c \in L$.
- *Bounded* if there are elements \bot , $\top \in L$ such that $a \lor \bot = a$ and $a \land \top = a$.
- *Complemented* if it is bounded and for every $a \in L$ there is $a^* \in L$ such that $a \wedge a^* = \bot$ and $a \vee a^* = \top$.

A *Boolean algebra* is a complemented distributive lattice.

Note that \wedge and \vee are idempotent in any [lattice.](#page-13-1) Moreover, we can define an ordering on L by setting $a \leq b$ if $a \wedge b = a$.

Example 1.4.2.

- (1) For every set I, the power set $\mathcal{P}(I)$ with $\wedge := \cap$ and $\vee := \cup$ is the prototypical [Boolean](#page-13-1) [algebra](#page-13-1). More generally, the clopen subsets of a topological space forma [Boolean algebra.](#page-13-1) Interestingly: every [Boolean algebra](#page-13-1) corresponds toa [Boolean algebra](#page-13-1) constructed in this way.
- (2)The set of finite and cofinite subsets of $\mathbb Z$ is a [Boolean algebra.](#page-13-1)
- (3)The set of Zariski-closed subsets of the affine variety \mathbb{C}^n is a [distributive lattice](#page-13-1) but not a [Boolean algebra.](#page-13-1)

Lecture 8

Proposition 1.4.3. Assuming that:

- • L is a [bounded lattice](#page-13-1)
- \leq is the order induced by the operations in L $(a \leq b$ if $a \wedge b = a)$

Then \leq is a partial order with least element \perp , greatest element \top , and for any $a, b \in L$, we have $a \wedge b = \inf\{a, b\}$ and $a \wedge b = \sup\{a, b\}$. Conversely, every partial order with all finite infs and sups isa [bounded lattice.](#page-13-1)

Proof. Exercise.

Classically, we say that $\Gamma \models t$ if for every valuation $v : L \rightarrow \{0, 1\}$ with $v(p) = 1$ for all $p \in \Gamma$ we have $v(t) = 1.$

We might want to replace $\{0,1\}$ with some other [Boolean algebra](#page-13-1) to get a semantics for [IPC,](#page-2-0) with an accompanying Completeness Theorem. But [Boolean algebras](#page-13-1) believe in the Law of Excluded Middle!

Definition 1.4.4 (Heyting algebra)**.** A Heyting algebra isa [bounded lattice](#page-13-1) equipped with a binary operation $\Rightarrow: H \times H \to H$ such that

 $a \wedge b \leq c \qquad \Longleftrightarrow \qquad a \leq (b \Rightarrow c)$

for all $a, b, c \in L$. A morphism of Heyting algebras is a function that preserves all finite meets, finite joins, and ⇒.

Example 1.4.5.

- (1) Every [Boolean algebra](#page-13-1)is a [Heyting algebra:](#page-14-0) define $a \Rightarrow b := a^* \vee b$, where a^* is the complement of a. Note that we must have $a^* = (a \Rightarrow \bot)$.
- (2)Every topology on a set X is a [Heyting algebra,](#page-14-0) where

$$
(U \Rightarrow V) := \text{int}((X \setminus U) \cup V).
$$

(3) A finite [distributive lattice](#page-13-1) has to bea [Heyting algebra](#page-14-0) (see Example Sheet 2).

Definition 1.4.6 (Valuation in Heyting algebras)**.** Let H bea [Heyting algebra](#page-14-0) and L be a propositional language with a set P of primitive propositions. An H*-valuation* is a function $v: P \to H$, extended to the whole of L recursively by setting:

$$
\bullet \ \ v(\perp) = \perp,
$$

- • $v(A \wedge B) = v(A) \wedge v(B)$,
- $v(A \vee B) = v(A) \vee v(B)$,
- $v(A \rightarrow B) = v(A) \Rightarrow v(B)$.

A proposition A is H-valid if $v(A) = \top$ for all H-valuations v, and is an H-consequence of a (finite) set of propositions Γ if $v(\Lambda \Gamma) \leq v(A)$ for all H-valuations v (written $\Gamma \models_H A$).

Lemma 1.4.7 (Soundness of Heyting semantics)**.** Assuming that:

- • H is a [Heyting algebra](#page-14-0)
- • $v: L \to H$ is a [valuation](#page-14-1)

Then $\Gamma \vdash_{\text{IPC}} A$ implies $\Gamma \models_H A$.

Proof. By induction over the structure of the proof $\Gamma \vdash A$.

- (Ax) As $v((\Lambda \Gamma) \wedge A) = v(\Lambda) \wedge v(A) \leq v(A)$ for any Γ and A.
- (\wedge -I) $A = B \wedge C$ and we have derivations $\Gamma_1 \vdash B$, $\Gamma_2 \vdash C$, with $\Gamma_1, \Gamma_2 \subseteq \Gamma$. By the induction hypothesis, we have $v(\Lambda \Gamma) \leq v(\Lambda \Gamma_1) \cap v(\Lambda \Gamma_2) \leq v(B) \wedge v(C) = v(B \wedge C) = v(A)$, i.e. $\Gamma \models_H A$.
- $(\rightarrow$ -I) $A = B \rightarrow C$ and so we must have $\Gamma \cup \{B\} \vdash C$. By induction hypothesis, we have $v(\Lambda \Gamma) \wedge$ $v(B) = v(\bigwedge \gamma \wedge B) \leq v(C)$. By the definition of \Rightarrow , this implies $v(\bigwedge \Gamma) \leq [v(B) \Rightarrow v(C)] =$ $v(B \to C) = v(A)$ $v(B \to C) = v(A)$ $v(B \to C) = v(A)$, i.e. $\Gamma \models_H A$.
- (\vee -I) $A = B \vee C$ and without loss of generality we have a derivation $\Gamma \vdash B$. By the induction hypothesis we have $v(\bigwedge \Gamma) \leq v(B)$, but $v(B \vee C) = v(B) \vee v(C)$, and hence $v(B) \leq v(B \vee C) =$ Lecture 9 $v(A)$.

- $(\wedge \text{-} \mathbf{E})$ By the induction hypothesis, we have $v(\bigwedge \Gamma) \leq v(B \wedge C) = v(B) \wedge v(C) \leq v(B), v(B)$.
- $(\rightarrow E)$ We know that $v(A \rightarrow B) = (v(A) \Rightarrow v(B))$. From $v(A \rightarrow B) \le v(A) \Rightarrow v(B)$, we derive $v(A) \wedge v(A \to B) \le v(B)$ by definition of \Rightarrow . So if $v(\bigwedge \Gamma) \le v(A \to B)$ and $v(\bigwedge \Gamma) \le v(A)$, then $v(\Lambda \Gamma) \leq v(B)$, as needed.
- $(\vee E)$ By induction hypothesis: $v(A \vee \wedge \Gamma) \leq v(C), v(B \vee \wedge \Gamma) \leq v(C)$ and $v(\wedge \Gamma) \leq v(A \vee B)$ $v(A) \vee v(B)$. This last fact means that $v(\Lambda \Gamma) \wedge (v(A) \vee v(B)) = v(\Lambda \Gamma)$. Now this is the same as $(v(\Lambda \Gamma) \wedge v(A)) \vee (v(\Lambda \Gamma) \wedge v(B))$ as [Heyting algebras](#page-14-0) are [distributive lattices](#page-13-1) (see Example Sheet 2), and this is $\leq v(C)$ by the first two inequalities of this paragraph.
- $(\perp E)$ If $v(\bigwedge \Gamma) \leq v(\perp) = \perp$, then $v(\bigwedge \Gamma) = \perp$, in which case $v(\bigwedge \Gamma) \leq v(A)$ for any A by minimality of \perp in H. \Box

Example 1.4.8. The Law of Excluded Middle is not intuitionistically valid. Let p be a primitive proposition and consider the [Heyting algebra](#page-14-0) given by the topology $\{\emptyset, \{1\}, \{1, 2\}\}\$ on $\{1, 2\}$. Wecan define a [valuation](#page-14-1) v with $v(p) = \{1\}$, in which case $v(\neg p) = \neg \{1\} = \text{int}(X \setminus \{1\}) = \emptyset$. So $v(p\vee\neg p) = \{1\}\vee\emptyset = \{1\} \neq \top$. Thus [Soundness of Heyting semantics](#page-15-0) implies that $\forall_{\text{IPC}} p\vee\neg p$ $\forall_{\text{IPC}} p\vee\neg p$ $\forall_{\text{IPC}} p\vee\neg p$.

Example 1.4.9. Peirce's Law $((p \rightarrow q) \rightarrow p) \rightarrow p$ is not intuitionistically valid. Take the valuation on the usual topology of \mathbb{R}^2 that maps p to $\mathbb{R}^2 \setminus \{(0,0)\}$ and q to \emptyset .

Classical completeness: $\Gamma \vdash_{\text{CPC}} A$ if and only if $\Gamma \models_2 A$.

Intuitionistic completeness: no single finite replacement for 2.

Definition (Lindenbaum-Tarski algebra). Let Q be a logical doctrine (CPC, [IPC,](#page-2-0) etc), L be a propositional language, and T be an L-theory. The Lindenbaum-Tarski algebra $F^Q(T)$ is built in the following way:

- • The underlying set of $F^Q(T)$ is the set of equivalence classes $[\varphi]$ of propositions φ , where $\varphi \sim \psi$ when $\widetilde{T}, \varphi \vdash_{Q} \psi$ and $\widetilde{T}, \psi \vdash_{Q} \varphi;$
- If \bowtie is a logical connective in the fragment Q, we set $[\varphi] \bowtie [\psi] := [\varphi \bowtie \psi]$ (should check well-defined: exercise).

We'll be interested in the case $Q = \text{CPC}$, $Q = \text{IPC}$ $Q = \text{IPC}$ $Q = \text{IPC}$, and $Q = \text{IPC} \setminus \{\rightarrow\}.$

Proposition1.4.10. The [Lindenbaum-Tarski algebra](#page-16-0) of any theory in $IPC \setminus \{\rightarrow\}$ is a [distribu](#page-13-1)[tive lattice.](#page-13-1)

Proof. Clearly, \wedge and \vee inherit associativity and commutativity, so in order for $F^{\text{IPC}}(\rightarrow)$ $F^{\text{IPC}}(\rightarrow)$ $F^{\text{IPC}}(\rightarrow)$ (*T*) to be a [lattice](#page-13-1) we need only to check the absorption laws:

$$
[\varphi] \vee [\varphi \wedge \psi] = [\varphi] \tag{α}
$$

$$
[\varphi] \wedge [\varphi \vee \psi] = [\varphi] \tag{β}
$$

Equation [\(](#page-16-1) α) is true since $T, \varphi \vdash_{IPC \setminus \{\rightarrow\}} \varphi \vee (\varphi \wedge \psi)$ $T, \varphi \vdash_{IPC \setminus \{\rightarrow\}} \varphi \vee (\varphi \wedge \psi)$ $T, \varphi \vdash_{IPC \setminus \{\rightarrow\}} \varphi \vee (\varphi \wedge \psi)$ by (∨-I), and also $T, \varphi \vee (\varphi \wedge \psi) \vdash_{IPC \setminus \{\rightarrow\}} \varphi$ by $(\vee E)$. Equation (β) is similar.

Now, for distributivity: $T, \varphi \wedge (\psi \vee \chi) \vdash (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$ by (∧-E) followed by (∨-E):

$$
\frac{\varphi \land (\psi \lor \chi)}{\varphi \qquad \psi \lor \chi} \qquad (\land-E)
$$

$$
\frac{\varphi \land (\psi \lor \chi)}{(\varphi \land \psi) \lor (\varphi \land \chi)} \qquad (\lor-E)
$$

Conversely, $T, ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)) \vdash \varphi \wedge (\psi \vee \chi)$ by (∨-E) followed by (∧-I).

Lecture 10

Lemma 1.4.11. The [Lindenbaum-Tarski algebra](#page-16-0) of any theory relative to [IPC](#page-2-0) isa [Heyting](#page-14-0) [algebra](#page-14-0).

*Proof.*We already saw that $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ is a [distributive lattice,](#page-13-1) so it remains to show that $[\varphi] \Rightarrow [\psi] :=$ $[\varphi \to \psi]$ gives a Heyting implication, and that $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ is [bounded.](#page-13-1)

Suppose that $[\varphi \wedge [\psi] \leq [\chi]$, i.e. $\tau, \varphi \wedge \psi \vdash_{\text{IPC}} \chi$ $\tau, \varphi \wedge \psi \vdash_{\text{IPC}} \chi$ $\tau, \varphi \wedge \psi \vdash_{\text{IPC}} \chi$. We want to show that $[\varphi] \leq [\psi \rightarrow \chi]$, i.e. $\tau, \varphi \vdash (\psi \rightarrow \chi)$. But that is clear:

$$
\frac{\varphi \quad [\psi]}{\varphi \land \psi}
$$
\n
$$
\frac{\chi}{\psi \to \chi} \quad (\text{hyp})
$$
\n
$$
\psi \to \chi
$$

Conversely, if $\tau, \varphi \vdash (\psi \rightarrow \chi)$, then we can prove $\tau, \varphi \land \psi \vdash \chi$:

$$
\frac{\varphi \land \psi}{\varphi \qquad \psi} \qquad (\land-E)
$$
\n
$$
\frac{\varphi \land \psi}{\psi \to \chi \qquad \psi} \qquad (\text{hyp})
$$
\n
$$
\chi \qquad (\rightarrow-E)
$$

So defining $[\varphi] \Rightarrow [\psi] := [\varphi \rightarrow \psi]$ provides a Heyting \Rightarrow .

The bottom element of $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ $F^{\text{IPC}}(T)$ is just $[\bot]$: if $[\varphi]$ is any element, then $T, \bot \vdash_{\text{IPC}} \varphi$ by \bot -E.

The top element is $\top := [\bot \to \bot: \text{if } \varphi \text{ is any proposition, then } [\varphi] \leq [\bot \to \bot] \text{ via }$

$$
\frac{\varphi \qquad \boxed{\perp}}{\perp \rightarrow \perp} \qquad (\perp-E)
$$

Theorem 1.4.12 (Completeness of the Heyting semantics)**.** A proposition is provable in [IPC](#page-2-0) if and only if it is H [-valid](#page-14-1) for every [Heyting algebra](#page-14-0) H .

Proof. One direction is easy: if $\vdash_{\text{IPC}} \varphi$ $\vdash_{\text{IPC}} \varphi$ $\vdash_{\text{IPC}} \varphi$, then there is a derivation in [IPC,](#page-2-0) thus $\top \leq v(\varphi)$ for any [Heyting algebra](#page-14-0) H and [valuation](#page-14-1) v, by [Soundness of Heyting semantics.](#page-15-0) But then $v(\varphi) = \top$ and φ is H[-valid.](#page-14-1)

For the other direction, consider the [Lindenbaum-Tarski algebra](#page-16-0) $F(L)$ $F(L)$ of the empty theory relative to [IPC,](#page-2-0)which is a [Heyting algebra](#page-14-0) by [Lemma 1.4.11.](#page-17-0) We can define a [valuation](#page-14-1) v by extending $P \to F(L), p \mapsto [p]$ $P \to F(L), p \mapsto [p]$ $P \to F(L), p \mapsto [p]$ to all propositions.

Asv is a [valuation,](#page-14-1) it follows by induction (and the construction of $F(L)$ $F(L)$) that $v(\varphi) = [\varphi]$ for all propositions.

Now φ is valid in every [Heyting algebra,](#page-14-0) and so is valid in $F(L)$ $F(L)$ in particular. So $v(\varphi) = \top = [\varphi],$ hence $\top \rightarrow \top \vdash_{\text{IPC}} \varphi$ $\top \rightarrow \top \vdash_{\text{IPC}} \varphi$ $\top \rightarrow \top \vdash_{\text{IPC}} \varphi$, hence $\vdash_{\text{IPC}} \varphi$.

Given a poset S, we can construct sets $a \uparrow := \{s \in S : a \leq s\}$ called *principal up-sets*.

Recall that $U \subseteq S$ is a *terminal segment* if $a \uparrow \subseteq U$ for each $a \in U$.

Proposition 1.4.13. If S is a poset, then the set $T(S) = \{U \subseteq S : S \in \mathbb{R}^N : S \neq \emptyset\}$ Uis a terminal segment of S can be made into a [Heyting algebra.](#page-14-0)

Proof. Order the [terminal segments](#page-18-0) by ⊆. Meets and joins are ∩ and ∪, so we just need to define \Rightarrow . If $U, V \in T(S)$ $U, V \in T(S)$ $U, V \in T(S)$, define $(U \Rightarrow V) := \{ s \in S : (s \uparrow) \cap U \subseteq V \}.$

If $U, V, W \in T(S)$ $U, V, W \in T(S)$ $U, V, W \in T(S)$, we have

 $W \subseteq (U \Rightarrow V)$ \iff $(w \uparrow) \cap U \subseteq V \forall w \in W$,

whichhappens if for every $w \in W$ and $u \in U$ we have $w \leq u \implies u \in V$. But W is a [terminal](#page-18-0) [segment](#page-18-0), so this is the same as saying that $W \cap U \subseteq V$. \Box

Definition 1.4.14 (Kripke model)**.** Let P be a set of primitive propositions. A *Kripke model* is a tuple (S, \leq, \Vdash) where (S, \leq) is a poset (whose elements are called "worlds" or "states", and whose ordering is called the "accessibility relation") and $\Vdash \subseteq S \times P$ is a binary relation ("forcing") satisfying the persistence property: if $p \in P$ is such that $s \Vdash p$ and $s \leq s'$, then $s' \Vdash p.$

Lecture11 Every valuation v on $T(S)$ induces a [Kripke model](#page-18-3) by setting $s \Vdash p$ is $s \in v(p)$.

Definition1.4.15 (Forcing relation). Let (S, \leq, \Vdash) be a Kripke model for a propositionallanguage. We define the extended [forcing](#page-18-3) relation inductively as follows:

- There is no $s \in S$ with $s \Vdash \perp$;
- $s \Vdash \varphi \wedge \psi$ if and only if $s \Vdash \varphi$ and $s \Vdash \psi$;
- $s \Vdash \varphi \vee \psi$ if and only if $s \Vdash \varphi$ or $s \Vdash \psi$;
- $s \Vdash (\varphi \to \psi)$ if and only if $s' \Vdash \varphi$ implies $s' \Vdash \psi$ for every $s' \geq s$.

It is easy to check that the [persistence](#page-18-3) property extends to arbitrary propositions.

Moreover:

- $s \Vdash \neg \varphi$ if and only if $s' \Vdash \varphi$ for all $s' \geq s$.
- $s \Vdash \neg\neg\varphi$ if and only if for every $s' \geq s$, there exists $s'' \geq s'$ with $s'' \Vdash \varphi$.

Notation. $S \Vdash \varphi$ for φ a proposition if all worlds in S [force](#page-18-3) φ .

In (3), $s \not\Vdash (p \rightarrow q) \rightarrow (\neg p \vee q)$. All [worlds force](#page-18-3) $p \rightarrow q$, and $s \not\Vdash q$. So to check the claim wejust need to verify that $s \not\vdash \neg p$. But that is the case, as $s' \geq s$ and $s' \Vdash p$.

Definition1.4.17 (Filter). A *filter* F on a [lattice](#page-13-1) L is a subset of L with the following properties:

- • $F \neq \emptyset$
- •F is a [terminal segment](#page-18-0) of L (i.e., if $f \leq x$ and $f \in F$, then $x \in F$)
- F is closed under finite meets

Example 1.4.18.

- (1) Given an element $j \in I$ of a set I, then the family F_j of all subsets of I containing j is a [filter](#page-19-0)on $P(I)$. Such a [filter](#page-19-0) is called a *principal filter*.
- (2) The family of all cofinite subsets of I is a filter on $\mathcal{P}(I)$, the Fréchet [filter.](#page-19-0)

Exercise: a maximal [proper](#page-20-0) [filter](#page-19-0) (known as an *ultra filter*) is not [principal](#page-20-1) if and only if it contains the Fréchet [filter.](#page-19-0)

(3) The family of all subsets of [0, 1] with Lebesgue measure 1 isa [filter.](#page-19-0)

A [filter](#page-19-0) is *proper* if $F \neq L$.

A [filter](#page-19-0)F on a [Heyting algebra](#page-14-0) is *prime* if it is [proper](#page-20-0) and satisfies: whenever $(x \vee y) \in F$, we can conclude that $x \in F$ or $y \in F$.

IfF is a [proper](#page-20-0) [filter](#page-19-0) and $x \notin F$, then there is a [prime](#page-20-2) filter extending F that still doesn't contain x (by Zorn's Lemma).

Lemma 1.4.19. Assuming that:

- H a [Heyting algebra](#page-14-0)
- v a H [-valuation](#page-14-1)

Thenthere is a [Kripke model](#page-18-3) (S, \leq, \Vdash) such that $v \models_H \varphi$ if and only if $S \Vdash \varphi$, for everyproposition φ .

Lecture 12

Proof (sketch). Let S be the set of all [prime](#page-20-2) [filters](#page-19-0) of H, ordered by inclusion. We write $F \Vdash p$ if andonly if $v(p) \in F$ for primitive propositions p.

We prove by induction that $F \Vdash \varphi$ if and only if $v(\varphi) \in F$ for arbitrary propositions.

For the implication case, say that $F \Vdash (\psi \to \psi')$ and $v(\psi \to \psi') = [v(\psi) \Rightarrow v(\psi')] \notin F$. Let G' be theleast [filter](#page-19-0) containing F and $v(\psi)$. Then

$$
G' = \{b : (\exists f \in F)(f \wedge v(\psi) \le b)\}.
$$

Note that $v(\psi') \notin G'$, or else $f \wedge v(\psi) \leq v(\psi')$ for some $f \in F$, whence $f \leq v(\psi \to \psi')$ and so $v(\psi \to \psi') \in F$ (as F is a terminal segment).

In particular, G' is [proper.](#page-20-0)So let G be a [prime](#page-20-2) [filter](#page-19-0) extending G' that does not contain $v(\psi')$ (exists by Zorn's lemma).

By the induction hypothesis, $G \Vdash \psi$, and since $F \Vdash (\psi \to \psi')$ and G' (this G) contains F, we havethat $G \Vdash \psi'$. But then $v(\psi') \in G$, contradiction.

This settles that $F \Vdash (\psi \to \psi')$ implies $v(\psi \to \psi') \in F$.

Conversely, say that $v(\psi \to \psi') \in F \subseteq G \Vdash \psi$. By the induction hypothesis, $v(\psi) \in G$, and so $v(\psi) \Rightarrow v(\psi) \in G$ $v(\psi) \Rightarrow v(\psi) \in G$ $v(\psi) \Rightarrow v(\psi) \in G$ (as $F \subseteq G$). But then $v(\psi') \ge v(\psi) \wedge (v(\psi) \Rightarrow v(\psi')) \in G$, as G is a [filter.](#page-19-0)

So the induction hypothesis gives $G \Vdash \psi'$, as needed.

Thecases for the other connectives are easy (\vee needs primality). So (S, \leq, \Vdash) is a Kripke model. Wantto show that $v \models_H \varphi$ if and only if $S \Vdash \varphi$, for each φ .

Conversely,say $S \Vdash \varphi$, but $v \not\models_H \varphi$. Since $v(\varphi) \neq \top$, there must be a proper filter that does not containit.We can extend it to a [prime](#page-20-2) [filter](#page-19-0) G that does not contain it, but then $G \not\vdash \varphi$, contradiction. \Box

Theorem 1.4.20 (Completeness of the Kripke semantics)**.** Assuming that:

• φ a proposition

Then $\Gamma \vdash_{\text{IPC}} \varphi$ $\Gamma \vdash_{\text{IPC}} \varphi$ $\Gamma \vdash_{\text{IPC}} \varphi$ if and only if for all [Kripke models](#page-18-3) (S, \leq, \Vdash) , the condition $S \Vdash \Gamma$ implies $S \Vdash \varphi$.

Proof. **Soundness:** indcution over the complexity of φ .

Adequacy: Say $\Gamma \not\models_{\text{IPC}} \varphi$ $\Gamma \not\models_{\text{IPC}} \varphi$ $\Gamma \not\models_{\text{IPC}} \varphi$. Then $v \models_H \Gamma$ but $v \not\models_H \varphi$ for some [Heyting algebra](#page-14-0) H and H[-valuation](#page-14-1) v [\(Theorem 1.4.12\)](#page-17-1). But then [Lemma 1.4.19](#page-20-3)applied to Hand v provides a [Kripke model](#page-18-3) (S, \leq, \Vdash) suchthat $S \Vdash \Gamma$, but $S \not\Vdash \varphi$, contradicting the hypothesis on every Kripke model. \Box

1.5 Negative translations

Definition 1.5.1 (Double-negation translation). We recursively define the $\neg\neg$ -translation φ^N of a propositon φ in the following way:

- If p is a primitive proposition, then $p^N := \neg \neg p$;
- $(\varphi \wedge \psi)^N := \varphi^N \wedge \psi^N$
- $(\varphi \to \psi)^N := \varphi^N \to \psi^N$
- $(\varphi \vee \psi)^N := \neg(\neg \varphi^N \wedge \neg \psi^N)$
- $\bullet \ \ (\neg \varphi)^N := \neg \varphi^N$

Lemma 1.5.2. Assuming that:

• H a [Heyting algebra](#page-14-0)

Then the map $\neg\neg: H \to H$ preserves \land and \Rightarrow .

Proof. Example Sheet 2.

Lemma 1.5.3 (Regularisation)**.** Assuming that:

• H a [Heyting algebra](#page-14-0)

Then

- (1)The subset $H_{\neg\neg} := \{x \in H : \neg\neg x = x\}$ is a [Boolean algebra;](#page-13-1)
- (2) For every [Heyting homomorphism](#page-14-0) $g : H \to B$ into a [Boolean algebra,](#page-13-1) there is a unique map of [Boolean algebras](#page-13-1) $g_{\neg \neg} : H_{\neg \neg} \to B$ such that $g(x) = g_{\neg \neg}(\neg \neg x)$ for all $x \in H$.

Lecture 13

Proof.

(1) Give $H_{\neg \neg} := \{x \in H : \neg \neg x = x\}$ the inherited order, so that $\wedge, \Rightarrow, \perp$ and \top (which are preserved by \neg) remain the same. We just need to define disjunctions in H_{\neg} properly.

Define $a \vee_{\neg \neg} b := \neg \neg (a \vee b)$ in H. It is easy to show that this gives sup $\{a, b\}$ in $H_{\neg \neg}$ (as $\neg \neg$ preservesorder), so $H_{\neg\neg}$ is a [Heyting algebra.](#page-14-0)

Asevery element of $H_{\neg \neg}$ is regular (i.e. $\neg\neg x = x$), it is a [Boolean algebra](#page-13-1) (see Example Sheet 2).

(2)Given a [Heyting homomorphism](#page-14-0) $g: H \to B$, where B is a [Boolean algebra,](#page-13-1) define $g_{\neg \neg} : H \to B$ as $g_{H_{\neg \neg}}$. It clearly preserves \bot , \top , \wedge , \Rightarrow , as those operations in $H_{\neg \neg}$ are inherited from H. But we also have

$$
g_{\neg \neg}(a \lor_{\neg \neg} b) = g|_{H_{\neg \neg}}(\neg \neg(a \lor b))
$$

=
$$
\neg \neg(g(a) \lor g(b))
$$

=
$$
g(a) \lor g(b)
$$

=
$$
g_{\neg \neg}(a) \lor g_{\neg \neg}(b)
$$

B is Boolean

Thus $g_{\neg \neg}$ is a morphism of [Boolean algebras.](#page-13-1) Note that any $x \in H$ provides an element $\neg\neg x \in H_{\neg \neg}$, since $\neg\neg\neg\neg x = \neg\neg x$ in H. Additionally,

$$
g_{\neg \neg}(\neg \neg x) = g(\neg \neg x)
$$

=
$$
\neg \neg g(x)
$$

=
$$
g(x)
$$

forall $x \in H$ (as $g(x)$ is in a [Boolean algebra\)](#page-13-1).

Now, if $h: H_{\neg \neg} \to B$ is a morphism of [Boolean algebras](#page-13-1) with $g(x) = h(\neg \neg x)$ for all $x \in H$, then $h(a) = h(\neg \neg a) = g(a) = g_{\neg \neg}(a)$ for all $a \in H$. So $g_{\neg \neg}$ is unique with this property. \Box

In particular, if S is a set, then $F^{\text{Heyt}}(S)_{\neg\neg} \cong F^{\text{Bool}}(S)$ $F^{\text{Heyt}}(S)_{\neg\neg} \cong F^{\text{Bool}}(S)$.

Theorem 1.5.4 (Glivenko's Theorem)**.** Assuming that:

• φ and ψ are propositions

Then $\vdash_{\text{CPC}} \varphi \to \psi$ if and only if $\vdash_{\text{IPC}} \neg \neg \varphi \to \neg \neg \psi$ $\vdash_{\text{IPC}} \neg \neg \varphi \to \neg \neg \psi$ $\vdash_{\text{IPC}} \neg \neg \varphi \to \neg \neg \psi$.

Proof.

 \Rightarrow If $\vdash_{\text{CPC}} \varphi \rightarrow \psi$, then $\top \leq \varphi \rightarrow \psi$ in $F^{\text{Bool}}(L) = F^{\text{Heyt}}(L) \rightarrow \cdot$ $F^{\text{Bool}}(L) = F^{\text{Heyt}}(L) \rightarrow \cdot$. As the inclusion $i : F^{\text{Heyt}}(L) \rightarrow \cdot$ $F^{\text{Heyt}}(L)$ $F^{\text{Heyt}}(L)$ strictly preserves \leq and \rightarrow , it follows that

$$
i(\top) \leq i(\varphi \to \psi)
$$

= $\varphi \to \psi$
= $\neg\neg(\varphi \to \psi)$
= $\neg\neg\varphi \to \neg\neg\psi$ as $\varphi \to \psi \in F^{\text{Heyt}}(L) \to$

in $F^{\text{Heyt}}(L)$ $F^{\text{Heyt}}(L)$, so $\vdash_{\text{IPC}} \neg \neg \varphi \rightarrow \neg \neg \psi$ $\vdash_{\text{IPC}} \neg \neg \varphi \rightarrow \neg \neg \psi$ $\vdash_{\text{IPC}} \neg \neg \varphi \rightarrow \neg \neg \psi$.

 \Leftarrow Obvious.

 \Box

 \Box

Corollary 1.5.5. Let φ be a proposition. Then $\vdash_{\text{CPC}} \varphi$ if and only if $\vdash_{\text{IPC}} \varphi^N$ $\vdash_{\text{IPC}} \varphi^N$ $\vdash_{\text{IPC}} \varphi^N$.

Proof. Induction over the complexity of formulae.

Corollary 1.5.6. CPC is inconsistent if and onlyif [IPC](#page-2-0) is inconsistent.

Proof.

 \Rightarrow If CPC is inconsistent, then there is φ such that $\vdash_{\text{CPC}} \varphi$ and $\vdash_{\text{IPC}} \neg \varphi$ $\vdash_{\text{IPC}} \neg \varphi$ $\vdash_{\text{IPC}} \neg \varphi$. But then $\vdash_{\text{IPC}} \neg \neg \varphi$ and $\vdash_{\text{IPC}} \neg \varphi$ $\vdash_{\text{IPC}} \neg \varphi$ $\vdash_{\text{IPC}} \neg \varphi$, so $\vdash_{\text{IPC}} \bot$.

 \Leftarrow Obvious.

2 Computability

"If a 'religion' is defined to be a system of ideas that contains improvable statements, then Gödel taught us that mathematics is not only a religion; it is the only religion that can prove itself to be on." – John Barrow

2.1 Recursive functions and λ**-computability**

Definition 2.1.1 (Partial recursive function)**.** The class of recursive functions is the smallest class of partial functions of the form $\mathbb{N}^k \to \mathbb{N}$ that contains the basic functions:

- Projections: $\Pi_i^m : (n_1, \ldots, n_m) \mapsto n_i;$
- Successor: $S^+ : n \mapsto n+1;$
- Zero: $z : n \mapsto 0$

and is closed under:

- Compositions: if $g: \mathbb{N}^k \to \mathbb{N}$ is partial recursive and so are $h_1, \ldots, h_k : \mathbb{N}^m \to \mathbb{N}$, then the function $f: \mathbb{N}^m \to \mathbb{N}$ given by $f(\overline{n}) = g(h_1(\overline{n}), \ldots, h_k(\overline{n}))$ is partial recursive.
- Primitive recursion: Given partial recursive functions $g: \mathbb{N}^m \to \mathbb{N}$ and $h: \mathbb{N}^{m+2} \to \mathbb{N}$, the function $f: \mathbb{N}^{m+1} \to \mathbb{N}$ defined by

$$
\begin{cases} f(0,\overline{n}) := g(\overline{n}) \\ f(k+1,\overline{n}) := h(f(k,\overline{n}),k,\overline{n}) \end{cases}
$$

• Minimisation: Suppose $g: \mathbb{N}^{m+1} \to \mathbb{N}$ is partial recursive. Then the function $f: \mathbb{N}^m \to \mathbb{N}$ that maps \bar{n} to the least n such that $g(n, \bar{n}) = 0$ (if it exists) is partial recursive.

Notation: $f(\overline{n}) = \mu n \cdot g(n, \overline{n}) = 0$.

The class of functions produced by the same conditions but excluding minimisation is called the class of *primitive recursive* functions.

A partial recursive function that is defined everywhere is called a *total recursive* function.

Lecture 14

The terms of the untyped λ -calculus Λ are given by the grammar

$$
\Lambda := V \mid \lambda V \Lambda \mid \Lambda \Lambda,
$$

where V is a (countable) set of variables.

The notions we previously discussed (α -equality, β -reduction, η -reduction, etc) apply tit for tat.

Example 2.1.2. Let $\omega := \lambda x . x x$ and $\Omega := \omega \omega$. Then $\Omega = (\lambda x . x x) \omega \rightarrow_{\beta} \omega \omega = \Omega$. This shows that we can have an infinite reduction chain of λ [-terms.](#page-24-2)

Question: If $M \to_{\beta} N$, $M \to_{\beta} N'$, do we have $N \to_{\beta} M'$ and $N' \to_{\beta} M'$ for some M' ?

Idea: "Simultaneously reduce" all the [redexes](#page-5-2) in M to get a term M[∗] . This might have new [redexes,](#page-5-2) so we can iterate the process to get terms M^{2*}, M^{3*}, \ldots

M should reduce to M^* , so we have $M \to_{\beta} M^* \to_{\beta} M^{2*}$,.... We'll see that if M reduces to N in k steps, then $N \rightarrow \beta M^{k*}$.

Using this, we will show (assuming $s \geq r$):

To get there, we want to build M^* with two properties:

- (1) $M \rightarrow_{\beta} M^*$;
- (2) If $M \rightarrow_{\beta} N$, then $N \rightarrow_{\beta} M^*$.

Definition 2.1.3 (Takahashi Translation)**.** The Takahashi translation M[∗] of a λ[-term](#page-24-2) M is recursively defined as follows:

- (1) $x^* := x$, for x a variable;
- (2)If $M = (\lambda x.P)Q$ is a [redex,](#page-5-2) then $M^* := P^*[x := Q^*];$
- (3) If $M = PQ$ is a λ [-application,](#page-4-2) then $M^* := P^*Q^*$;
- (4) If $M = \lambda x.P$ is a λ [-abstraction,](#page-4-2) then $M^* := \lambda x.P^*$.

These rules are numbered by order of precendence, in case of ambiguity. We also define M^{0*} := M and $M^{(n+1)*}:=(M^{n*})^*$.

Note that M^* is not necessarily in β [-normal form,](#page-6-2) for example if $M = (\lambda x . xy)(\lambda y . y)$, then

$$
M^* = (xy)^*[x := (\lambda y.y)^*] = (xy)[x := \lambda y.y] = (\lambda y.y)y.
$$

Lemma 2.1.4. Assuming that:

• M and N are λ [-terms](#page-24-2)

Then

(1) $FV(M^*) \subseteq FV(M);$

$$
(2) M \twoheadrightarrow_{\beta} M^*;
$$

(3) If $M \to_{\beta} N$, then $N \to_{\beta} M^*$.

Proof. Induction over the structure of λ [-terms.](#page-24-2)

Lemma 2.1.5. [Takahashi translation](#page-25-0) preserves β -contraction:

$$
((\lambda x.P)Q)^* \twoheadrightarrow_{\beta} (P[x := Q])^*.
$$

Proof. By definition, $((\lambda x.P)Q)^* = P^*[x := Q^*]$. By induction over the structure of P, we can check that:

• If Q is not a λ [-abstraction,](#page-4-2) then $P^*[x := Q^*] = (P[x := Q])^*$,

• If
$$
Q = \lambda y.Q_1
$$
, then $P^*[x := (\lambda y.Q_1)^*] \rightarrow_{\beta} (P[x := \lambda y.Q_1])^*$.

Lecture 15

Lemma 2.1.6. Assuming that: • $M \rightarrow_B N$ Then $M^* \to_{\beta} N^*$.

Proof. Induction over the structure of M. We'll leave the easier cases as exercises, and focus on when Mis a [redex,](#page-5-2) or when $M = P_1P_2$, where P_1 is not a λ [-abstraction](#page-4-2) and $N = Q_1P_2$ with $P_1 \rightarrow_{\beta} Q_1$.

Supposethat $M = (\lambda x.P_1)P_2$ is a [redex.](#page-5-2) Then there are three possibilities for N.

- (1) $N = P_1[x := P_2]$ $N = P_1[x := P_2]$ $N = P_1[x := P_2]$: here $M^* \to_{\beta} N^*$ by the previous lemma.
- (2) $N = (\lambda x . Q_1) P_2$, where $P_1 \rightarrow_{\beta} Q_1$: here $N^* = Q_1^*[x := P_2^*]$ $N^* = Q_1^*[x := P_2^*]$ $N^* = Q_1^*[x := P_2^*]$. By the induction hypothesis, $P_1^* \twoheadrightarrow_{\beta} Q_1^*$, so

$$
M^* = P_1^*[x := P_2^*] \to_{\beta} Q_1^*[x := P_2^*] = N.
$$

 \Box

(3) $N = (\lambda x . Q_1) Q_2$, where $P_2 \rightarrow_{\beta} Q_2$: is similar.

Now suppose $M = P_1P_2$, where P_1 is not a λ [-abstraction,](#page-4-2) and $N = Q_1P_2$ with $P_1 \rightarrow_{\beta} Q_1$. Here $M^* = P_1^* P_2^*$. If Q_1 is not a λ [-abstraction,](#page-4-2) the result is clear. So let $Q_1 = \lambda y.R$. Applying the induction hypothesis to $P_1 \to_{\beta} \lambda y.R$, we get $P_1^* \to_{\beta} \lambda y.R^*$. Thus

$$
M^* = P_1^* P_2^* \twoheadrightarrow_{\beta} (\lambda y.R^*) P_2^* \rightarrow_{\beta} R^*[y := P_2^*] = N^*.
$$

Corollary 2.1.7. If $M \rightarrow_{\beta} N$, then $M^* \rightarrow_{\beta} N^*$.

Proof. Induction over the length of the chain $M \rightarrow \beta N$, using [Lemma 2.1.6.](#page-26-0)

 \Box

Applyi[n](#page-25-0)g this multiple times, $M \twoheadrightarrow_{\beta} N$ implies $M^{n*} \twoheadrightarrow_{\beta} N^{n*}$ for all $n < \omega$.

Theorem 2.1.8. Assuming that: • M β [-reduces](#page-5-0) to N in n steps

The[n](#page-25-0) $N \twoheadrightarrow_{\beta} M^{n*}$.

Proof. By induction over n. The base case is clear, as $n = 0$ implies $M = N$.

For $n > 0$, there is a [term](#page-24-2) R with $M \to_{\beta} R \to_{(n-1)\beta} N$. By induction hypothesis, $N \to_{\beta} R^{n-1*}$. Si[n](#page-25-0)ce $M \to_{\beta} R$, we have $R \to_{\beta} M^*$ by [Lemma 2.1.4.](#page-26-1) Thus we get $R^{n-1*} \to_{\beta} M^{n*}$ by the previous observation. Putting it all together:

$$
N \twoheadrightarrow_{\beta} R^{n-1*} \twoheadrightarrow_{\beta} M^{n*}.
$$

Theorem 2.1.9 (Church, Rosser, 1936)**.** Assuming that:

• M, N_1, N_2 are λ [-terms](#page-24-2) such that $M \rightarrow_{\beta} N_1, N_2$

Then there is a λ [-term](#page-24-2) N such that $N_1, N_2 \rightarrow \beta N$.

Proof. Say $M \rightarrow_{r} N_1$, $M \rightarrow_{s} N_2$. Without loss of generality, say $r \leq s$. By [Theorem 2.1.8,](#page-27-0) we have that $N_1 \twoheadrightarrow_{\beta} M^{r*}$ and $N_2 \twoheadrightarrow_{\beta} M^{s*}$. But $M^{r*} \twoheadrightarrow_{\beta} M^{s*}$ by successive applications of [Lemma 2.1.4](#page-26-1) (as $r \leq s$). So take $N = M^{s*}$. \Box Reminder of the picture to think of:

This has some important consequences:

- If $M \equiv_{\beta} N$, then they \rightarrow_{β} to the same [term;](#page-24-2)
- •If the β [-normal form](#page-6-2) of a [term](#page-24-2) exists, it is unique;
- We can use this to show that two [terms](#page-24-2) are not β -equivalent.

Example. $\lambda x.x$ and $\lambda x.\lambda y.x$ are different [terms](#page-24-2) in β [-normal form,](#page-6-2) so they can't be β -equivalent.

Definition 2.1.10 (Church numeral)**.** Let n be a natural number. Its corresponding *Church numeral* c_n is the λ [-term](#page-24-2) $c_n := \lambda s.\lambda z.s^n(z)$, where $s^n(z)$ denotes

$$
\underbrace{s(s(\ldots(s z)\ldots)}_{n \text{ times}}).
$$

Example 2.1.11. $c_0 = \lambda s.\lambda z.z$ $c_0 = \lambda s.\lambda z.z$ is the 'function' that takes s to the identity map. $c_1 = \lambda s.\lambda z.\lambda s(z)$ $c_1 = \lambda s.\lambda z.\lambda s(z)$ is the 'function' that takes s to itself. $c_2 = \lambda s.\lambda z.s(s(z))$ $c_2 = \lambda s.\lambda z.s(s(z))$ takes a function s to its 2-fold composite $z \mapsto s(s(z))$.

Definition 2.1.12 (lambda-definability). A partial function $f : \mathbb{N}^k \to \mathbb{N}$ is λ -definable if there is a λ [-term](#page-24-2) F su[c](#page-28-0)h that $Fc_{n_1} \dots c_{n_k} \equiv_\beta c_{f(n_1,\dots,n_k)}$ $Fc_{n_1} \dots c_{n_k} \equiv_\beta c_{f(n_1,\dots,n_k)}$ $Fc_{n_1} \dots c_{n_k} \equiv_\beta c_{f(n_1,\dots,n_k)}$.

Proposition 2.1.13 (Rosser)**.** Define the following λ[-term:](#page-24-2)

- $A_+ := \lambda x.\lambda y.\lambda s.\lambda z. xs(ys(z)),$
- $A_* := \lambda x. \lambda y. \lambda s. x(ys),$
- $A_e := \lambda x. \lambda y. yx.$

Then for all $n, m \in \mathbb{N}$:

- • $A_+c_nc_m \equiv_\beta c_{n+m};$ $A_+c_nc_m \equiv_\beta c_{n+m};$ $A_+c_nc_m \equiv_\beta c_{n+m};$
- $A_* c_n c_m \equiv_\beta c_{nm};$ $A_* c_n c_m \equiv_\beta c_{nm};$ $A_* c_n c_m \equiv_\beta c_{nm};$
- $A_e c_n c_m \equiv_\beta c_{n^m}$ $A_e c_n c_m \equiv_\beta c_{n^m}$ $A_e c_n c_m \equiv_\beta c_{n^m}$ if $m > 0$.

Lecture 16

Proof. We'll show that $A_+c_nc_m \equiv_\beta c_{n+m}$ $A_+c_nc_m \equiv_\beta c_{n+m}$ $A_+c_nc_m \equiv_\beta c_{n+m}$, and leave the rest to you.

First note that

$$
c_n sz = (\lambda f. \lambda x. f^n(x))sz \equiv_{\beta} (\lambda x. s^n(x))z \equiv_{\beta} s^n(z).
$$

So:

$$
A_{+}c_{n}c_{m} = (\lambda x.\lambda y.\lambda s.\lambda z.xs(ysz))c_{n}c_{m}
$$

\n
$$
\equiv_{\beta} (\lambda y.\lambda s.\lambda z.c_{n}s(ysz))c_{m}
$$

\n
$$
\equiv_{\beta} \lambda s.\lambda z.c_{n}s(c_{m}sz))
$$

\n
$$
\equiv_{\beta} \lambda s.\lambda z.s^{n}(s^{m}z)
$$

\n
$$
\equiv_{\beta} \lambda s.\lambda z.s^{n}(s^{m}z)
$$

\n
$$
\equiv_{\beta} \lambda s.\lambda z.s^{m+n}(z)
$$

\n
$$
\equiv_{\beta} c_{n+m}
$$

 \Box

In a similar fashion, we can also encode binary truth-values:

Proposition 2.1.14. Define the λ[-terms:](#page-24-2)

- • $\top := \lambda x.\lambda y.x$
- $\bot := \lambda x. \lambda y. y$
- (if B then P else $Q \mathrel{\mathop:}= B P Q$

Then for λ [-terms](#page-24-2) P and Q , we have

- (if \top then P else Q) $\equiv_{\beta} P$;
- (if \perp then P else Q) $\equiv_{\beta} Q$.

Proof. Just compute it!

With this, we can encode logical connectives via:

• $\neg p := \text{if } p \text{ then } \bot \text{ else } \top;$ $\neg p := \text{if } p \text{ then } \bot \text{ else } \top;$ $\neg p := \text{if } p \text{ then } \bot \text{ else } \top;$

- • $\wedge p_1p_2 := \text{if } p_1 \text{ then } (\text{if } p_2 \text{ then } \top \text{ else } \bot) \text{ else } \bot;$ $\wedge p_1p_2 := \text{if } p_1 \text{ then } (\text{if } p_2 \text{ then } \top \text{ else } \bot) \text{ else } \bot;$ $\wedge p_1p_2 := \text{if } p_1 \text{ then } (\text{if } p_2 \text{ then } \top \text{ else } \bot) \text{ else } \bot;$
- $\vee p_1p_2 := \text{if } p_1 \text{ then } \top \text{ else } (\text{if } p_2 \text{ then } \top \text{ else } \bot).$ $\vee p_1p_2 := \text{if } p_1 \text{ then } \top \text{ else } (\text{if } p_2 \text{ then } \top \text{ else } \bot).$ $\vee p_1p_2 := \text{if } p_1 \text{ then } \top \text{ else } (\text{if } p_2 \text{ then } \top \text{ else } \bot).$

We can also encode pairs: if we define $[P,Q] := \lambda x . x PQ$, then $[P,Q] \top \equiv_{\beta} P$ and $[P,Q] \bot \equiv_{\beta} Q$. However, it is *not true* that $[M\top, M\bot] \equiv_{\beta} M!$

Recursivelydefining [term](#page-24-2)s within the λ -calculus requires a clever idea: we see such a term as a solution to a fixed point equation $F = \lambda x.M$ where F occurs somewhere in M.

Theorem 2.1.15 (Fixed Point Theorem). There is a λ [-term](#page-24-2) Y such that, for all F:

 $F(YF) \equiv_{\beta} YF$.

Proof. Define

$$
Y = \lambda f.(\lambda x.f(xx))\lambda x.f(xx).
$$

If we compute YF , we get:

$$
YF = (\lambda f.(\lambda x.f(xx))\lambda x.f(xx))F
$$

\n
$$
\equiv_{\beta} (\lambda x.F(xx))\lambda x.F(xx)
$$

\n
$$
\equiv_{\beta} F((\lambda x.F(xx))(\lambda x.F(xx)))
$$

\n
$$
\equiv_{\beta} F((\lambda f.(\lambda x.f(xx))\lambda x.f(xx))F)
$$

\n
$$
\equiv_{\beta} F(YF)
$$

We call any combinator (i.e. a λ [-term](#page-24-2) without free variables) Y satisfying the property $F(YF) \equiv_{\beta} YF$ for all [terms](#page-24-2) F a *fixed-point combinator*.

Corollary 2.1.16. Given a λ [-term](#page-24-2) M, there is a λ -term F such that $F \equiv_{\beta} M[f := F]$.

Proof. Take $F = Y \lambda f.M$. Then

$$
F \equiv_{\beta} (\lambda f.M) Y(\lambda f.M) \equiv_{\beta} (\lambda f.M) F \equiv_{\beta} M[f := F].
$$

 \Box

Example 2.1.17. Suppose D is a λ [-term](#page-24-2) ecoding a predicate, i.e. $P c_n \equiv_\beta \bot$ $P c_n \equiv_\beta \bot$ $P c_n \equiv_\beta \bot$ or \top for every $n \in \mathbb{N}$. Let's write down a λ [-termt](#page-24-2)hat encodes a program that takes a number and computes the next number satisfying the predicate. First consider

$$
M := \lambda f. \lambda x. \text{(if } (Px) \text{ then } x \text{ else } f(Sx),
$$

where S encodes the successor map. Our goal is to have M run on itself. This can be done by

using the [term](#page-24-2) $F := YM$. Indeed:

 $Fc_n \equiv_\beta (\text{if } Pc_n \text{ then } c_n \text{ else }Fc_{n+1})$ $Fc_n \equiv_\beta (\text{if } Pc_n \text{ then } c_n \text{ else }Fc_{n+1})$ $Fc_n \equiv_\beta (\text{if } Pc_n \text{ then } c_n \text{ else }Fc_{n+1})$ $Fc_n \equiv_\beta (\text{if } Pc_n \text{ then } c_n \text{ else }Fc_{n+1})$ $Fc_n \equiv_\beta (\text{if } Pc_n \text{ then } c_n \text{ else }Fc_{n+1})$

for every $n \in \mathbb{N}$.

Notation. $\lambda x s z.f$ will be short hand for $\lambda x.\lambda s.\lambda z.f$ (and the obvious generalisation to any number of variables, labelled in any way).

Lemma 2.1.18. The basic [partial recursive functions](#page-24-3) are λ -definable.

Proof. The *i*-th projection $\mathbb{N}^k \to \mathbb{N}$ is definable by $\pi_i^k : \lambda x_1 \dots \lambda x_k \dots x_i$.

[Successor](#page-24-3) is implemented by $S := \lambda x.\lambda s.\lambda z.s(xsz)$.

The zero map is given by $Z := \lambda x.c_0$ $Z := \lambda x.c_0$ $Z := \lambda x.c_0$.

Just compute!

Lecture 17

Lemma 2.1.19. The class of λ[-definable](#page-28-1) functions is closed under [composition.](#page-24-3)

Proof. Say G is a λ [-term](#page-24-2) defining $g : \mathbb{N}^k \to \mathbb{N}$, and that λ [-terms](#page-24-2) H_1, \ldots, H_k define $h_1, \ldots, h_k : \mathbb{N}^m \to \mathbb{N}$. Then the composite map $f : \overline{n} \mapsto g(h_1(\overline{n}), \ldots, h_k(\overline{n}))$ is definable by the [term](#page-24-2)

 $F := \lambda x_1 \dots x_m : (G(H_1 x_1 \dots x_m) \dots (H_k x_1 \dots x_m))$

by inspection.

Lemma 2.1.20. The class of λ [-definable](#page-28-1) functions is closed under [primitive recursion.](#page-24-3)

Proof. Suppose $f : \mathbb{N}^{m+1} \to \mathbb{N}$ is obtained from $h : \mathbb{N}^{m+2} \to \mathbb{N}$ and $g : \mathbb{N}^m \to \mathbb{N}$ by [primitive recursion.](#page-24-3)

$$
f(0, \overline{n}) := g(\overline{n})
$$

$$
f(k+1, \overline{n}) := h(f(k, \overline{n}), k, \overline{n})
$$

and the λ [-terms](#page-24-2) H and G define h and h respectively.

We need a λ[-term](#page-24-2) to keep track of a pair that records the current state of computation: the value of k and the value of f at that stage.

 \Box

So define

$$
T := \lambda p. [S(p\pi_1), H(p\pi_2)(p\pi_1)x_1 \dots x_n],
$$

whi[c](#page-28-0)h acts on a pair $[c_k, c_{f(k,\overline{n}]}]$ $[c_k, c_{f(k,\overline{n}]}]$ $[c_k, c_{f(k,\overline{n}]}]$ by updating the iteration data. Then f ought to be definable by

$$
F := \lambda x.\lambda x_1 \ldots x_m.xT[c_0, Gx_1 \ldots x_m]\pi_2.
$$

Indeed,

$$
Fc_kc_{n_1}\ldots c_{n_m} \equiv_\beta c_kT[c_0, Gc_{n_1}\ldots c_{n_m}]\pi_2
$$

$$
\equiv_\beta T^k[c_0, c_{g(\pi)}]\pi_2
$$

by definition of c_k c_k , and since

$$
T[c_k, c_{f(k,\pi)}] \equiv_{\beta} [Sc_k, Hc_{f(k,\overline{n})}c_k c_{n_1}, \dots, c_{n_m}]
$$

$$
\equiv_{\beta} [c_{k+1}, c_{h(f(k,\overline{n}),k,\overline{n})}]
$$

we have

$$
Fc_kc_{n_1}\ldots c_{n_m}\equiv_\beta T^k([c_0, Gc_{n_1}\ldots c_{n_m}])\pi_2\equiv_\beta c_{f(k,\overline{n})}
$$

as needed.

Lemma 2.1.21. The λ -definable functions are closed under [minimisation.](#page-24-3)

Proof. Suppose G λ [-defines](#page-28-1) $g : \mathbb{N}^{m+1} \to \mathbb{N}$, and that $f : \mathbb{N}^m \to \mathbb{N}$ is defined from g by [minimisation:](#page-24-3) $f(\overline{n}) = \mu k. g(k, \overline{n}) = 0.$

We can λ [-define](#page-28-1) f by implementing an algorithm that searches for the least k in the following way: Firstdefine a [term](#page-24-2) that can check if a [Church numeral](#page-28-0) is c_0 c_0 , for example

$$
zero? := \lambda x. x(\lambda y. \bot) \top.
$$

You can check that

zero?
$$
c_n \equiv_\beta \begin{cases} \top & \text{if } n = 0 \\ \bot & \text{otherwise} \end{cases}
$$

.

Nowwe want a [term](#page-24-2) that, on input k, checks if $g(k, \overline{n}) = 0$ and returns k if so, else runs itself on $k + 1$. If we can do this, running it on input $k = 0$ will perform the search.

Let:

Search :=
$$
\lambda f.\lambda g.\lambda k.\lambda x_1 \ldots \lambda x_m
$$
 (if zero?($gkx_1 \ldots x_m$) then k else ($f(g(Sk)x_1 \ldots x_m))$),

and set

$$
F := \lambda x_1 \dots \lambda x_m. (Y \operatorname{Search}) G c_0 x_1 \dots x_m.
$$

Note that

$$
(Y \operatorname{Search}) G c_k c_{n_1} \dots c_{n_m} \equiv_\beta \operatorname{Search}(Y \operatorname{Search}) G c_k c_{n_1} \dots c_{n_m},
$$

which is

if zero?($Gc_kc_{n_1}\ldots c_{n_m}$ $Gc_kc_{n_1}\ldots c_{n_m}$ $Gc_kc_{n_1}\ldots c_{n_m}$ $Gc_kc_{n_1}\ldots c_{n_m}$) then c_k else (([Y](#page-30-0) [Search\)](#page-29-0) $Gc_{k+1}c_{n_1}\ldots c_{n_m}$.

Thus

$$
(Y \operatorname{Search}) G c_k c_{n_1} \dots c_{n_m} \equiv_{\beta} c_k
$$

if $g(k,\overline{n})=0$ and

$$
(Y \text{Search}) G c_k c_{n_1} \dots c_{n_m} \equiv_{\beta} (Y \text{Search}) G c_{k+1} c_1 \dots c_m
$$

otherwise, as g is λ [-defined](#page-28-1) by G. Hence

$$
Fc_{n_1} \ldots c_{n_m} \equiv_{\beta} (Y \text{Search}) Gc_0 c_{n_1} \ldots c_{n_m} \equiv_{\beta} c_{f(\overline{n})}
$$

if f is defined on \overline{n} . So F λ [-defines](#page-28-1) f.

Theorem 2.1.22. Every [partial recursive function](#page-24-3) is λ [-definable.](#page-28-1)

Lecture 18

Definition 2.1.23 (Gödel numbering). Let L be a first-order language. A Gödel numbering is an injection $L \hookrightarrow \mathbb{N}$ that is:

- (1) Computable (assuming some notion of computability for strings of symbols over a finite alphabet);
- (2) Its image is a recursive subset of \mathbb{N} ;
- (3) Its inverse (where defined) is also computable.

Notation. We will use $\lceil \varphi \rceil$ to be the [Gödel numbering](#page-33-0) of an element of L, for some fixed choice of [Gödel numbering.](#page-33-0)

One way: assign a unique nuber n_s to each symbol s in your finite alphabet σ . We can then define

$$
\lceil s_0 \dots s_k \rceil := \sum_{i=0}^k (n_{s_i} + 1).
$$

Remark. We can also encode proofs: add a symbol $\#$ to the alphabet and code a proof with lines $\varphi_0, \ldots, \varphi_k$ as $\lceil \varphi_0 \# \varphi_1 \# \cdots \# \varphi_k \rceil$.

Theorem 2.1.24. Assuming that:

• f is λ [-definable](#page-28-1)

Then f is [partial recursive.](#page-24-3)

Proof(sketch). Assign [Gödel numbers](#page-33-0) $\lceil \tau \rceil$ to λ λ λ [-terms](#page-24-2) τ . We can then consider a [partial recursive](#page-24-3) [function](#page-24-3) in $N(t)$ that on input t checks if t is the [Gödel numbering](#page-33-0) of a λ [-term](#page-24-2) τ , and returns the [Gödel numbering](#page-33-0) of its β [-normal form](#page-6-2) if it exists (undefined otherwise).

We also have [partial recursive functions](#page-24-3) that convert n to $[c_n]$ an[d](#page-33-1) vice-versa. Finally, say f is a partial function defined by a λ [-term](#page-24-2) F. We can compute $f(\overline{m})$ by first converting [Church numerals](#page-28-0) to their [Gödel numbers,](#page-33-0) then append the result to $[F]$ $[F]$ $[F]$ in order to get $[Fc_{n_1} \ldots c_{n_k}]$ $[Fc_{n_1} \ldots c_{n_k}]$ $[Fc_{n_1} \ldots c_{n_k}]$, then apply N.

If f is defined on \overline{n} , then $Fc_{n_1} \ldots c_{n_k}$ $Fc_{n_1} \ldots c_{n_k}$ $Fc_{n_1} \ldots c_{n_k}$ has a β [-normal form,](#page-6-2) and what we get is $\lceil c_{f(\overline{n})} \rceil$ $\lceil c_{f(\overline{n})} \rceil$ $\lceil c_{f(\overline{n})} \rceil$. Otherwise $N(\lceil F c_{n_1} \ldots c_{n_k} \rceil)$ $N(\lceil F c_{n_1} \ldots c_{n_k} \rceil)$ $N(\lceil F c_{n_1} \ldots c_{n_k} \rceil)$ is not defined.

We finish by going back from $[c_{f(\overline{n})}]$ to $f(\overline{n})$.

 \Box

2.2 Decidability in Logic

Recallthat a subset $X \subseteq \mathbb{N}$ is *recursive* (or *decidable*) if its characteristic map is [total recursive.](#page-24-3)

Definition 2.2.1 (Recursively enumerable). We say that $X \subseteq \mathbb{N}$ is *recursively enumerable* if any of the following are true:

- (1) X is the image of some [partial recursive](#page-24-3) $f : \mathbb{N} \to \mathbb{N}$;
- (2) X is the image of some [total recursive](#page-24-3) $f : \mathbb{N} \to \mathbb{N}$;
- (3) $X = \text{dom } f$, for f a [partial recursive](#page-24-3) $f : \mathbb{N} \to \mathbb{N}$.

Note,if X and $\mathbb{N}\setminus X$ are both [recursively enumerable,](#page-34-1) then X is [recursive.](#page-34-2) Note that the set of [partial](#page-24-3) [recursive function](#page-24-3) is countable, so we can fix an enumeration $\{f_0, f_1, \ldots\}$.

Example 2.2.2. The subset $W = \{(i, x) : f_i \text{ is defined on } x\} \subseteq \mathbb{N}^2$ is [recursively enumerable,](#page-34-1) but not [recursive.](#page-34-2)

Definition 2.2.3 (Recursive / decidable language)**.** A language L is *recursive* if there is an algorithm that [decides](#page-34-2) whether a string of symbols is an L-formula. An *L*-theory *T* is *recursive* if membership in *T* is [decidable](#page-34-2) (for *L*-sentences). An L-theory T if there is an algorithm for [deciding](#page-34-2) whether $T \models \varphi$.

We will work with [recursive](#page-34-3) from now on.

Theorem 2.2.4 (Craig)**.** Assuming that:

• T is a first order theory with a [recursively enumerable](#page-34-1) set of axioms

Then T admitsa [recursive](#page-34-2) axiomatisation.

*Proof.*By hypothesis, there is a [total recursive](#page-24-3) f such that the axioms of T are exactly $\{f(n) : n \in \mathbb{N}\}\$. **Idea:** Replace $f(n)$ with something equivalent, but with a shape that lets us retrieve n. Let

> $\psi_n = \bigwedge^n$ $k=1$ $(f(n))$

for each n and

$$
T^* := \{ \psi_n : n \in \mathbb{N} \}.
$$

Then T^* has the same deductive closure as T . As formulae have finite length, we can check in finite time whether some χ is $f(0)$ or some $\bigwedge_{k=1}^{n} A_n$. By appropriate use of brackets, we can make sure that Lecture 19 such an n is "unique" if we are working with some ψ_n .

> In the first case, we halt and say we have a member of T^* . In the second cas, we check if $A = f(n)$, saying we have a member of T^* if so, and that we don't otherwise.

> We can do this because we can scan the list $\{f(n) : n < \omega\}$ and check symbol by symbol whether $f(n)$ matches A, which takes finite time.

If the input is not of the right shape, we halt and decide that it is $\notin T^*$.

 \Box

Lemma 2.2.5. The set of [\(Gödel numberings](#page-33-0) for) [total recursive](#page-24-3) functions is not [recursively](#page-34-1) [enumerable](#page-34-1).

Proof. Suppose otherwise, so there isa [total recursive](#page-24-3) function whose image is the set of [Gödel num](#page-33-0)[berings](#page-33-0) of [total recursive](#page-24-3) functions.

So for any [total recursive](#page-24-3) r, there is [n](#page-33-1) such that $[f(n)] = r$. Define $q : \mathbb{N} \to \mathbb{N}$ by $q(n) = [f(n)] (n) + 1$. This is certainly [total recursive,](#page-24-3) but can't be the function coded by $f(m)$ for any m, contradiction. \Box

Definition 2.2.6 (Language of arithmetic)**.** The language of arithmetic is the first-order language L_{PA} with signature $(0, 1, +, \cdot, <)$. The *base theory of arithmetic* is the L_{PA} -theory $P^$ whose axioms express that:

 (1) + and \cdot are commutative and associative, with identity elements 0 and 1 respectively;

- (2) · distributes over +;
- (3) < is a linear ordering compatible with + and \cdot ;
- (4) $\forall x. \forall y. (x < y \rightarrow \exists z. x + z = y);$
- (5) $0 < 1 \wedge \forall x.(x > 0 \rightarrow x \geq 1);$
- (6) $\forall x.x \geq 0.$

The (first-order) theory of Peano arithmetic PA is obtained from PA by adding the *scheme of induction*: for each L_{PA} -formula $\varphi(x, \overline{y})$, the axiom

 $I\varphi := \forall \overline{y}.(\varphi(0,\overline{y}) \wedge \forall x.(\varphi(x,\overline{y}) \rightarrow \varphi(x+1,\overline{y})) \rightarrow \forall x.\varphi(x,\overline{y}).$

Definition 2.2.7 (Delta0-formula, Sigma1-formula)**.** A ∆0*-formula* of [PA](#page-35-0) is one whose quantifiers are bounded, i.e. $\exists x < t.\varphi(x)$ or $\forall x < t.\varphi(x)$, where t is not free in φ and φ is quantifier free.

We say $\varphi(\overline{x})$ is a Σ_1 -formula if there is a Δ_0 -formula $\psi(\overline{x}, \overline{y})$ such that

$$
PA \vdash \varphi(\overline{x}) \leftrightarrow \exists \overline{y}.\psi(\overline{x}, \overline{y}).
$$

It is a Π_1 -forumla if there is a Δ_0 -formula $\psi(\overline{x}, \overline{y})$ such that

 $PA \vdash \varphi(\overline{x}) \iff \forall \overline{y}.\psi(\overline{x}, \overline{y}).$ $PA \vdash \varphi(\overline{x}) \iff \forall \overline{y}.\psi(\overline{x}, \overline{y}).$

InExample Sheet 4, you will prove that the characteristic function of a Δ_0 -definable set is [partial](#page-24-3) [recursive](#page-24-3). We will show that the Σ_1 -definable sets are precisely the [recursively enumerable](#page-34-1) ones.

Recallthat defining $\langle x, y \rangle = \frac{(x+y)(x+y+1)}{2} + y$ yields a [total recursive](#page-24-3) bijection $\mathbb{N}^2 \to \mathbb{N}$.

Applying this a bunch of times, we get [total recursive](#page-24-3) bijections $\mathbb{N}^k \to \mathbb{N}$ by $\langle v, \overline{w} \rangle = \langle v, \langle \overline{w} \rangle \rangle$.

This is not good, as we have a different function for each k . We'd like a "pairing function" that lets us see a number as a code for a sequence of any length.

This can be done within any model of [PA](#page-35-0) by using a single function $\beta(x, y)$ (known as Gödel's β function) which is definable in [PA.](#page-35-0)

We want an arithmetic procedure that can associate a code to sequences of any length, and such that the entries of the sequence can be recovered from the code.

Lecture 20 We will do this by a clever application of the Chinese Remainder Theorem.

Suppose given a sequence $x_0, x_1, \ldots, x_{n-1}$ of natural numbers. We want numbers $m + 1, 2m + 1$ $1, \ldots, nm+1$ to serve as moduli, with $x_i < (i+1)m+1$, and all of which are pairwise coprime. If we can find m such that these conditions hold, then there is a number a such that $a \equiv x_i \pmod{(i+1)m+1}$.

Taking $m = \max(n, x_0, \ldots, x_{m-1})!$ works.

We say that the pair (a, m) *codes* the sequence.

Definition 2.2.8 (beta indexing). The function $\beta : \mathbb{N}^2 \to \mathbb{N}$ is defined by $\beta(x, i) = a\%(m(i + i))$ $1) + 1$, where a and m are the unique numbers such that $x = \langle a, m \rangle$.

Remark. The forumula $\beta(x, y) = z$ is given in [PA](#page-35-0) by a Δ_0 -formula. We will use the notation $(x)_i$ for $\beta(x, i)$; thus the decoding property is that $(x)_i = x_i$ if $x = \langle a, m \rangle$ codes x_0, \ldots, x_{n-1} .

Lemma 2.2.9 (Gödel's Lemma)**.** Assuming that:

- $M \models PA$
- $n \in \mathbb{N}$
- $x_0, \ldots, x_{n-1} \in \mathcal{M}$

Then there is $u \in M$ such that $\mathcal{M} \models (u)_i = x_i$ for all $i < n$.

Theorem 2.2.10. Assuming that:

• $f: \mathbb{N}^k \to \mathbb{N}$ a partial function

Then f is recursive if and only if there is a Σ_1 -formula $\theta(\overline{x}, y)$ such that $y = f(\overline{x}) \iff \mathbb{N} \models$ $\theta(\overline{x}, y)$.

Proof. \Leftarrow Suppose that $y = f(\overline{x})$ is Σ_1 -definable by $\theta(\overline{x}, y) := \exists \overline{z} . \varphi(\overline{x}, y, \overline{z})$ (so $\varphi \in \Delta_0$).

The function first(x) = $(\mu y \le x) \cdot \exists z \le x.(x = \langle y, z \rangle)$ is [primitive recursive.](#page-24-3) By [minimisation,](#page-24-3) the function

$$
g(\overline{x}) = \mu z.(\exists v, \overline{w} \le z.(z = \langle v, \overline{w} \rangle \land \varphi(\overline{x}, v, \overline{w})))
$$

is [partial recursive.](#page-24-3)

Since $\langle v,\overline{w}\rangle = \langle v,\langle \overline{w}\rangle\rangle$ for tuples \overline{w} , we have that first $(\langle v,\overline{w}\rangle) = v$. Thus

$$
first(g(\overline{x})) = \begin{cases} \text{The least } y \text{ such that } \mathbb{N} \models \theta(\overline{x}, y) & \text{if there is such } y \\ \text{undefined} & \text{otherwise} \end{cases}
$$

as for each $\overline{x} \in \mathbb{N}$ there is at most one y such that $\mathbb{N} \models \theta(\overline{x}, y)$. Now $\mathbb{N} \models \theta(\overline{x}, y) \iff y = f(\overline{x})$, so $f(\overline{x}) = \text{first}(g(\overline{x}))$ whenever defined. So f is [partial recursive.](#page-24-3)

 \Rightarrow We will show that the class of all functions with Σ_1 -graphs contains the basic functions and is closed under [composition, primitive recursion,](#page-24-3) and [minimisation.](#page-24-3)

The graphs of zero, successor, and *i*-th projection are the formulae $y = 0$, $y = x + 1$, and $y = x_i$ respectively, so are Σ_1 -definable.

If $f(x_1, \ldots, x_k)$ and $g_1(\overline{z}), \ldots, g_k(\overline{z})$ all have Σ_1 -graphs, then the graph of the composite is given by:

$$
\exists u_1,\ldots,u_k.\bigwedge_{i=1}^n (u_i=g_i(\overline{z})\wedge y=f(u_1,\ldots,u_k)).
$$

This is equal to a Σ_1 -formula, as those are closed under \wedge , \exists . If $f(\overline{x}, y)$ is obtained by [primitive](#page-24-3) [recursion](#page-24-3)

$$
\begin{cases} f(\overline{x},0) = g(\overline{x}) \\ f(\overline{x},y+1) = h(\overline{x},y,f(\overline{x},y)) \end{cases}
$$

where g and h have Σ_1 -graphs, then we can use [Gödel's Lemma](#page-37-0) to show that the graph of f is given by

$$
\exists u, v.(v = g(\overline{x}) \land (u)_0 = v \land (u)_y = z \land \forall i < y.\exists r, s.[r = (u)_i \land s = (u)_{i+1} \land s = h(\overline{x}, i, r)].
$$

We do this by coding the sequence $f(\overline{x}, 0), f(\overline{x}, 1), \ldots, f(\overline{x}, y)$ by u. This formula is equal to a Σ_1 -formul since:

- (1) $z = (x)_y$ is Δ_0 ;
- (2) If the graph of h is defined by $\exists \bar{t}.\psi(\bar{x}, i, r, s, \bar{t})$ with $\psi \in \Delta_0$, then

$$
\forall i < y. \exists r, s[r = (u)_i \land s = (u)_{i+1} \land s = h(\overline{x}, i, r)]
$$

is equal to

$$
\exists w. \forall i < y. \exists r, s, \overline{t} \le w(r = (u)_i \land s = (u)_{i+1} \land \psi(\overline{x}, i, r, s, \overline{t}))
$$

as we can take w to be the maximum between suitable r, s, \bar{t} with $r = (u)_i, s = (u)_{i+1},$ $\psi(\overline{x}, i, r, s, \overline{t})$ with $i = 0, 1, \ldots, y - 1$.

A similar argument gives closure under [minimisation.](#page-24-3)

Lecture 21 If $f(\overline{x})$ is $\mu y.g(\overline{x}, y) = 0$ and the graph of g is definable by a Σ_1 -formula, then the graph of f is definable by

$$
\exists u.((u)_y = 0 \land \forall i < y.((u)_i \neq 0 \land \underbrace{\forall j \leq y. \exists v(v = g(\overline{x}, j) \land v = (u)_j}_{(*)}))
$$

by using [Gödel's Lemma](#page-37-0) to code $q(\overline{x}, 0), q(\overline{x}, 1), \ldots, q(\overline{x}, f(\overline{x})).$

Again, this is equal to a Σ_1 -formula if the graph of g is given by $\exists \overline{w}\varphi(\overline{x},y,z,\overline{w})$ with $\varphi \in \Delta_0$, then (∗) is equal in N to

$$
\exists s. \forall j \leq y. \exists v, \overline{w} \leq s. (v = (u)_j \land \varphi(\overline{x}, j, v, \overline{w})).
$$

 \Box

Corollary 2.2.11. if and only if A subset $A \subseteq \mathbb{N}^k$ is [recursively enumerable](#page-34-1) if and only if there is a Σ_1 -formula $\psi(x_1,\ldots,x_k)$ such that, given $\overline{x} \in \mathbb{N}^k$, we have $\overline{x} \in A$ if and only if $\mathbb{N} \models \psi(x)$.

Proof.

 \Rightarrow If A is [recursively enumerable,](#page-34-1)then there is a [recursive](#page-34-2) f such that $A = \text{dom}(f)$. Given $\overline{x} \in \mathbb{N}^k$, we thus have $x \in A$ if and only if $\mathbb{N} \models \exists v.v = f(\overline{x})$. But $\exists v.v = f(\overline{x})$ is equal to a Σ_1 -formula by [Theorem 2.2.10.](#page-37-1)

 \Leftarrow Conversely, if A is defined in N by a Σ_1 -formula ψ , define $f(\overline{x}) = 0$ if $\mathbb{N} \models \psi(\overline{x})$, and $f(\overline{x}) \uparrow$ otherwise. The graph of f is given by $y = 0 \wedge \psi(\overline{x})$, which is Σ_1 , and so f is [recursive](#page-34-2) by [Theorem 2.2.10.](#page-37-1) But $A = \text{dom}(f)$, so A is [recursively enumerable.](#page-34-1) \Box

Any model of [PA](#page-35-0)[−] includes a copy of N inside of it: consider the *standard natural numbers*

$$
\underline{n} = \underbrace{SSS\ldots S}_{n}0.
$$

In fact, N embeds in any model [PA](#page-35-0)[−] as an initial segment: essentially because

$$
PA^{-} \vdash \forall x.(x \leq \underline{k} \rightarrow x = \underline{0} \land x = \underline{1} \land \dots \land x = \underline{k}).
$$

In Example Sheet 4, you will see that N is a Δ_0 -elementary substructure of any model of [PA](#page-35-0)⁻: every Δ_0 -sentence $\varphi(n)$ true in N is also true in the model.

Definition 2.2.12 (Representation of a total function). Let $f: \mathbb{N}^k \to \mathbb{N}$ be total and T be any L_{PA} L_{PA} L_{PA} -theory extending [PA](#page-35-0)⁻. We say that f is *represented in* T if there is an L_{PA} - formula $\theta(x_1,\ldots,x_k,y)$ such that, for all $\overline{n} \in \mathbb{N}^k$:

(a)
$$
T \vdash \exists ! y.\theta(\overline{n},y)
$$

(b) If $k = f(\overline{n})$, then $T \vdash \theta(\overline{n}, k)$

Lemma 2.2.13. Every total recursive function $f : \mathbb{N}^k \to \mathbb{N}$ is Σ_1 [-represented](#page-39-0) in [PA](#page-35-0)⁻.

Proof. The graph of f is given by a Σ_1 -formula by [Theorem 2.2.10,](#page-37-1) say $\exists \overline{z} \cdot \varphi(\overline{x}, y, \overline{z})$ where $\varphi \in \Delta_0$. Without loss of generality, we may assume that \overline{z} is a single variable (for example, rewrite $\exists z.\exists \overline{w}$) $z.\varphi(\overline{x}, y, \overline{w})$.

Let $\psi(\overline{x}, y, z)$ be the Δ_0 -formula

$$
\varphi(\overline{x}, y, z) \land \forall u, v \leq y + z.(u + v < y + z \to \neg \varphi(\overline{x}, u, v)).
$$

Then the Σ_1 -formula $\theta(\overline{x}, y) := \exists z.\psi(\overline{x}, y, z)$ [represents](#page-39-0) f in [PA](#page-35-0)⁻.

We show [PA](#page-35-0)⁻ $\vdash \theta(\overline{n}, k)$ first, where $k = f(\overline{n})$. Note that k is the unique element of N such that $\mathbb{N} \models \exists z \cdot \varphi(\overline{n}, k, z), \text{ as } f \text{ is a function.}$

Take l to be the first natural number such that $\mathbb{N} \models \varphi(\overline{n}, k, l)$. Then $\mathbb{N} \models \psi(\overline{n}, k, l)$ too, whence $\mathbb{N} \models \exists z.\psi(\overline{n},k,z)$ $\mathbb{N} \models \exists z.\psi(\overline{n},k,z)$ $\mathbb{N} \models \exists z.\psi(\overline{n},k,z)$. But any Σ_1 -sentence true in \mathbb{N} is true in any model of [PA](#page-35-0)⁻(c.f. Example Sheet 4), so [PA](#page-35-0)⁻ $\vdash \exists z.\psi(\overline{n}, k, z)$, i.e. PA⁻ $\vdash \theta(\overline{n}, k)$.

To see that [PA](#page-35-0)⁻ $\vdash \exists ! y.\theta(\overline{n}, y)$, let l be the first number such taht $\mathbb{N} \models \varphi(\overline{n}, k, l)$, where $k = f(\overline{n})$. Suppose $a, b \in \mathcal{M} \models \text{PA}^ a, b \in \mathcal{M} \models \text{PA}^ a, b \in \mathcal{M} \models \text{PA}^-$, with $\mathcal{M} \models \psi(\overline{n}, a, b)$. We will show that $a = k$. Completeness settles the claim. Again, $\varphi(\overline{n}, k, l)$ is a Δ_0 -sentence true in N, thus true in M.

Using the fact that \lt is a linear ordering in M, we have $a, b \leq k + l \in \mathbb{N}$, so $a, b \in \mathbb{N}$ (as $\mathbb N$ is an initial segment of M). Now $\mathcal{M} \models \psi(\overline{n}, a, b) \in \Delta_0$, hence $\mathbb{N} \models \psi(\overline{x}, a, b)$ and thus $\mathbb{N} \models \exists z. \varphi(\overline{n}, a, z)$. Thus $a = k$ as needed. \Box

Corollary 2.2.14. Every [recursive](#page-34-2) set $A \subseteq \mathbb{N}^k$ is Σ_1 [-representable](#page-39-0) in [PA](#page-35-0)⁻.

Proof. The characteristic function χ_A of A is [total recursive,](#page-24-3) so $\chi_A(\bar{x}) = y$ is [represented](#page-39-0) by some Σ_1 -formula $\theta(\overline{x}, y)$ in [PA](#page-35-0)⁻. But then $\theta(\overline{x}, 1)$ [represents](#page-39-0) A in PA⁻. \Box

Lecture 22

Lemma 2.2.15 (Diagonalisation Lemma)**.** Assuming that:

- T an L_{PA} L_{PA} L_{PA} -theory
- in T, every [total recursive](#page-24-3) function is Σ_1 [-represented](#page-39-0)
- $\theta(x)$ an L_{PA} L_{PA} L_{PA} -formula with one free variable x

Then there is an L_{PA} L_{PA} L_{PA} -sentence G such that

 $T \vdash G \leftrightarrow \theta([G]).$ $T \vdash G \leftrightarrow \theta([G]).$ $T \vdash G \leftrightarrow \theta([G]).$

Moreover, if θ is a Π_1 -formula, then we can take G to be a Π_1 -sentence.

*Proof.*Define a [total recursive](#page-24-3) function diag this way: on input $n \in \mathbb{N}$, check if $n = [\sigma(x)]$ is the [Gödel numbering](#page-33-0) of some L_{PA} L_{PA} L_{PA} -formula $\sigma(x)$. If so, return $[\forall y.(y = n \rightarrow \sigma(y))]$, else return 0.

As diag is [total recursive,](#page-24-3) it is Σ_1 [-represented](#page-39-0) in T by some $\delta(x, y)$. Consider the formula

$$
\psi(x) := \forall z. (\delta(x, z) \to \theta(z)).
$$

Let $n = [\psi(x)]$ and $G := \forall y.(y = \underline{n} \rightarrow \psi(y))$. This makes G the sentence whose [Gödel numbering](#page-33-0) is diag($[\psi(x)]$). It is obvious that $T \vdash G \leftrightarrow \psi(\underline{n})$, so we know that

$$
T \vdash G \leftrightarrow \forall z. (\delta(\underline{n}, z) \to \theta(z)). \tag{a}
$$

Now $\delta(x, y)$ [represents](#page-39-0) diag in T, and diag(n) = [[G](#page-33-1)] by construction, hence

$$
T \vdash \forall z. (\delta(\underline{n}, z) \leftrightarrow z = \lceil G \rceil). \tag{β}
$$

Combining [\(](#page-40-1) α) and (β), we get $T \vdash G \leftrightarrow \theta([G])$ $T \vdash G \leftrightarrow \theta([G])$ $T \vdash G \leftrightarrow \theta([G])$ as needed.

 \Box Finally, note that if $\theta \in \Pi_1$, then both ψ and G are equal to a Π_1 -formula.

Theorem 2.2.16 (Crude Incompleteness)**.** Assuming that:

- •T be a [recursive](#page-34-2) set of [\(Gödel numberings](#page-33-0) of) L_{PA} L_{PA} L_{PA} -sentences
- T is consistent (never includes both φ and $\neg \varphi$)
- T contains all the Σ_1 and Π_1 sentences provable in [PA](#page-35-0)⁻

Then there is a Π_1 -sentence τ such that $\tau \notin T$ and $\neg \tau \notin T$.

Proof. Let $\theta(x)$ be a Σ_1 -formula that [represents](#page-39-0) T in [PA](#page-35-0)⁻, so that

 $x \in T \iff \text{PA}^- \vdash \theta(x)$ $x \in T \iff \text{PA}^- \vdash \theta(x)$ $x \in T \iff \text{PA}^- \vdash \theta(x)$ and $x \notin T \iff \text{PA}^- \vdash \neg \theta(x)$.

This exists since T is [recursive.](#page-34-2) By the [Diagonalisation Lemma,](#page-40-2) there is a Π_1 -sentence τ such that $PA^{-} \vdash \tau \leftrightarrow \neg \theta(\lceil \tau \rceil).$ $PA^{-} \vdash \tau \leftrightarrow \neg \theta(\lceil \tau \rceil).$ $PA^{-} \vdash \tau \leftrightarrow \neg \theta(\lceil \tau \rceil).$ $PA^{-} \vdash \tau \leftrightarrow \neg \theta(\lceil \tau \rceil).$

If $[\tau] \in T$, th[e](#page-33-1)n [PA](#page-35-0)⁻ $\vdash \theta([\tau])$ $\vdash \theta([\tau])$ $\vdash \theta([\tau])$, and thus PA⁻ $\vdash \neg \tau$. But then $[\neg \tau] \in T$ (as $\neg \tau \in \Sigma_1$ and PA⁻ proves it).

If $\lceil \neg \tau \rceil \in T$, then $\tau \notin T$, so [PA](#page-35-0)⁻ $\vdash \neg \theta(\lceil \tau \rceil)$ $\vdash \neg \theta(\lceil \tau \rceil)$ $\vdash \neg \theta(\lceil \tau \rceil)$, and thus PA⁻ $\vdash \tau$. As $\tau \in \Pi_1$ and PA⁻ $\vdash \tau$, we have $\lceil \tau \rceil \in T$ $\lceil \tau \rceil \in T$ $\lceil \tau \rceil \in T$.

Since T is consistent, we can't have either of $\lceil \tau \rceil$ or $\lceil \neg \tau \rceil$ in T.

 \Box

Corollary 2.2.17 (Gödel-Rosser Theorem). Let T be a consistent L_{PA} L_{PA} L_{PA} -theory extending [PA](#page-35-0)⁻ andadmitting a [recursively enumerable](#page-34-1) axiomatisation. Then T is Π_1 -incomplete: there is a Π_1 -sentence τ such that $T \nvdash \tau$ and $T \nvdash \neg \tau$.

Proof. By [Craig'](#page-34-4)s Theorem, we may assume that T is [recursive.](#page-34-2) Suppose that T is Π_1 -complete, and consider the set S of [\(Gödel numberings](#page-33-0) of) all the Σ_1 and Π_1 sentences in L_{PA} L_{PA} L_{PA} that T proves.

The set S is [recursive:](#page-34-2) we can effectively decide if a given sentence is Σ_1 or Π_1 , then check if $\lceil \sigma \rceil \in S$ by systematically searching through all proofs using the axioms in T, until we either find a proof of σ or a proof of $\neg \sigma$. Since T is Π_1 -complete, there is always such a proof, and we'll find it in finite time.

But then S satisfies the hypotheses of [Theorem 2.2.16,](#page-41-0) so there is a Π_1 -sentence τ with $|\tau| \notin S$ an[d](#page-33-1) $\lceil \neg \tau \rceil \notin S$, contradicting Π_1 -completeness of T. \Box

Definition 2.2.18 (Recursive structure). A (countable) L_{PA} L_{PA} L_{PA} -structure M is *recursive* if there are [total recursive](#page-24-3) functions $\oplus : \mathbb{N}^2 \to \mathbb{N}, \otimes : \mathbb{N}^2 \to \mathbb{N}, \text{ a binary recursive relation } \leq \mathbb{N}^2, \text{ and }$ natural numbers $n_0, n_1 \in \mathbb{N}$ such that $\mathcal{M} \cong (\mathbb{N}, \oplus, \otimes, \preccurlyeq, n_0, n_1)$ as L_{PA} L_{PA} L_{PA} -structures.

Lecture 23 We will show that the usual N is the only [recursive](#page-41-1) model of PA (up to \cong).

Strategy:

- (1) Given a countable model M of [PA](#page-35-0), we note that we encode subsets of N as elements of \mathcal{M} ;
- (2) If M is non-standard, then there is an element that codes a non[-recursive](#page-34-2) set;
- (3) If M also has [recursive](#page-34-2) \oplus , then there is a membership [decision](#page-34-2) procedure for any subset that it codes.

Note that there is a Σ_1 -formula pr (x, y) that captures y being the x-th prime, and [PA](#page-35-0) $\vdash \forall x . \exists ! y.$ pr (x, y) . So if N thinks that k is the n-th prime, then any model of [PA](#page-35-0) thinks so too. Write π_n for the n-th prime.

Lemma 2.2.19 (Overspill)**.** Assuming that:

- M a non-standard model of [PA](#page-35-0)
- $\varphi(x)$ an L_{PA} L_{PA} L_{PA} -formula
- $\mathcal{M} \models \varphi(n)$ for all standard natural numbers n

Then there is a nonstandard natural number e such that $\mathcal{M} \models \varphi(e)$.

Proof. Say $M \models \varphi(n)$ for all standard n, but only them. Then $M \models \varphi(0)$ and $M \models \forall n.(\varphi(n) \rightarrow$ $\varphi(n+1)$ holds (if $\varphi(n)$ holds, then n and hence $n+1$ are standard).

By $I\varphi$ (induction), we conclude that $\mathcal{M} \models \forall n \cdot \varphi(n)$. But M is non-standard, so there is non-standard $e \in \mathcal{M}$ with $\varphi(e)$, contradiction. \Box

Fix some $m \in \mathbb{N}$, and a property $\varphi(x)$ of the natural numbers.

- There is a number c such that $\forall k < m. (\varphi(k) \leftrightarrow \pi_k \mid c)$, namely the product of all primes π_k with $k < m$ and $\varphi(k)$.
- We perceive c as a code for the numbers with the property φ below m, which we can decode by prime factorisation.

Definition 2.2.20 (Canonically coded). A subset $S \subseteq \mathbb{N}$ is *canonically coded* in a model M of [PA](#page-35-0) if there is $c \in \mathcal{M}$ such that

$$
S = \{ n \in \mathbb{N} : \exists y . (\pi_n \times y = c) \}
$$

where \underline{n} denotes the standard number n in the model.

We could use other formulas to code subsets. Th subsets of N coded in M are those $S \subseteq N$ for which there is a [PA](#page-35-0)-formula $\varphi(x, y)$ and $c \in \mathcal{M}$ such that $S = \{n \in \mathbb{N} : \mathcal{M} \models \varphi(\underline{n}, c)\}.$

As it turns out, coding via Σ_1 -formulae gives nothing new:

Proposition 2.2.21. Assuming that:

- $C(u, x)$ be a Δ_0 -formula
- $\cal M$ a non-standard model of [PA](#page-35-0)

Then given any $\tilde{b} \in \mathcal{M}$, there is $c \in \mathcal{M}$ such that, for any $n \in \mathbb{N}$:

$$
\mathcal{M} \models \exists k < \tilde{b}.\mathcal{C}(k, n) \leftrightarrow \exists y. (\pi_n \times y) = c.
$$

Proof (sketch)*. The following formula holds in N for any n:

 $\forall b. \exists a. \forall u < n. (\exists k < b. C(k, u) \leftrightarrow \exists y. (\pi_u \times y) = a).$

This is by the reasoning we gave when introducing codes, which works due to the bound on k and u . This can be proved in [PA](#page-35-0)*.

Thus

$$
\mathcal{M} \models \forall b. \exists a. \forall u < \underline{n}. (\exists k < b. C(k, u) \leftrightarrow \exists y. (\pi_u \times y = a))
$$

for any $n \in \mathbb{N}$. So by [Lemma 2.2.19](#page-42-0) there is a non-standard $w \in \mathcal{M}$ such that

 $\mathcal{M} \models \forall b. \forall a. \forall u < w. (\exists k < b. C(k, u) \leftrightarrow \exists y. (\pi_u \times y = a)).$

So for any $\tilde{b} \in \mathcal{M}$, there must be $c \in \mathcal{M}$ such that

$$
\mathcal{M} \models \forall u < w. (\exists k < \tilde{b}.\, C(k, u) \leftrightarrow \exists y. (\pi_u \times y = c)).
$$

Now w is non-standard, so $\mathcal{M} \models \underline{n} < w$ for all $n \in \mathbb{N}$. So for any $\tilde{b} \in \mathcal{M}$ there is $c \in \mathcal{M}$ with

$$
\mathcal{M} \models \exists k < \tilde{b}.\mathcal{C}(k, n) \leftrightarrow \exists y. (\pi_n \times y = c)
$$

for all $n \in \mathbb{N}$.

Definition 2.2.22 (Recursively inseparable). We say that subsets $A, B \subset \mathbb{N}$ are *recursively inseparable* if they are disjoint and there is no [recursive](#page-34-2) $C \subseteq \mathbb{N}$ with $B \cap C = \emptyset$ and $A \subseteq C$.

Proposition 2.2.23. There are [recursively enumerable](#page-34-1) subsets $A, B \subseteq \mathbb{N}$ that are [recursively](#page-43-0) [inseparable.](#page-43-0)

Proof. Fix an effective enumeration $\{\varphi_n : n < \omega\}$ of the [partial recursive functions.](#page-24-3) Define $A = \{n \in \mathbb{R}^n : n \leq \omega\}$ $\mathbb{N} : \varphi_n(n) = 0$ and $B = \{n \in \mathbb{N} : \varphi_n(n) = 1\}$, which are clearly disjoint and are clearly [recursively](#page-34-1) [enumerable.](#page-34-1)

Supposethere is a [recursive](#page-34-2) C with $A \subseteq C$ and $B \cap C = \emptyset$, and write χ_C for its [\(total recursive\)](#page-24-3) characteristic function. There must be $u \in \mathbb{N}$ such that $\chi_C = \varphi_u$, as χ_C is [total recursive.](#page-24-3)

Since $\chi_C(u) \downarrow$ and is either 0 or 1, we have either $u \in A$ or $u \in B$.

If $u \in A$, then $\chi_C(u) = \varphi_u(u) = 0$, so $u \notin C$, contradicting $A \subseteq C$; so $u \in B$. But then $\chi_C(u) =$ $\varphi_u(u) = 1$, so $u \in C$, contradicting $B \cap C = \emptyset$. Thus A and B are [recursively inseparable.](#page-43-0) \Box

Lecture 24

Lemma 2.2.24. Assuming that:

• $M \models PA$ non-standard

Then there is a non[-recursive](#page-34-2) set S which is canonically coded in M .

Proof. Say $A, B \subseteq \mathbb{N}$ are [recursively enumerable](#page-34-1) and [recursively inseparable.](#page-43-0) By [Corollary 2.2.11,](#page-38-0) there are Σ_1 -formulae $\exists u.a(u, x)$ and $\exists u.b(u, x)$ defining A and B respectively (so a and b are Δ_0 -formulae).

Fix $n \in \mathbb{N}$. As the sets are disjoint, we have:

$$
\mathbb{N} \models \forall v < n. \forall w < n. \forall x < n. \neg(a(v, x) \land b(w, x)).
$$

As this sentence is Δ_0 , it follows, for any non-standard $\mathcal{M} \models PA$ and $n \in \mathcal{M}$ that:

$$
\mathcal{M} \models \forall v < \underline{n}.\forall w < \underline{n}.\forall x < \underline{n}.\neg(a(v, x) \land b(w, x)).
$$

By [Overspill,](#page-42-0) there is some non-standard $c \in \mathcal{M}$ such that

$$
\mathcal{M} \models \forall v < c. \forall w < c. \forall x < x. \neg(a(v, x) \land b(w, x)). \tag{*}
$$

Now define $X := \{n \in \mathbb{N} : \exists v < c.a(v, n)\}.$ Note that:

- $A \subseteq X$: let $n \in A$, so that $\mathbb{N} \models a(m,n)$ for some $m \in \mathbb{N}$ (a A is defined by $\exists u.a(u,x)$). Then $\mathcal{M} \models a(\underline{m}, \underline{n})$, as a is Δ_0 . Hence $\mathcal{M} \models \exists v < c.a(v, \underline{n})$ as any standard \underline{m} is below c as it is non-standard. But then $n \in X$.
- $B \cap X = \emptyset$: if $n \in B$, then $\mathbb{N} \models b(m,n)$ for some m, so arguing as before we get $\mathcal{M} \models \exists w <$ $c.b(w, n)$. By $(*)$, we can deduce $\mathcal{M} \models \neg \exists v < c.a(v, n)$. So $n \notin X$.

As A and B are [recursively inseparable,](#page-43-0) X can't be [recursive.](#page-34-2) This shows that M must encode a non[-recursive](#page-34-2) set, which implies that it must [canonically](#page-42-1) encode a non[-recursive](#page-34-2) set by [Proposi](#page-43-1)[tion 2.2.21.](#page-43-1) \Box **Theorem 2.2.25** (Tennenbaum)**.** Assuming that:

• $\mathcal{M} = (M, \oplus, \otimes, \preccurlyeq, n_0, n_1)$ a countable non-standard model of [PA](#page-35-0)

Then \oplus is not [recursive.](#page-34-2)

Proof. As M is countable, we may as well assume that $M = N$, $n_0 = 0$, $n_1 = 1$.

By [Lemma 2.2.24,](#page-44-1) there is some $c \in M$ that [canonically codes](#page-42-1) a non[-recursive](#page-34-2) subset $X = \{n : M \models$ $\exists y.(\pi_{\underline{n}} \times y = c) \subseteq \mathbb{N}.$

As [PA](#page-35-0) proves that

$$
\pi_{\underline{n}} \times x = \underbrace{x + \cdots + x}_{\pi_n \text{ times}},
$$

we have that

•

$$
\pi_{\underline{n}} \times y = \underbrace{y + \dots + y}_{\pi_n \text{ times}}
$$

for all $y \in M$. So $n \in X$ if and only if there is $d \in M$ such that

$$
c = \underbrace{d \oplus \cdots \oplus d}_{\pi_n \text{ times}}.
$$

Suppose \oplus is [recursive.](#page-34-2) Then we can can through N (which is M) and look for some $d \in M$ that realises the disjunction of:

$$
\begin{cases}\nc = \underbrace{x \oplus \cdots \oplus x}_{\pi_n x \cdot s} \\
c = \underbrace{x \oplus \cdots \oplus x}_{\pi_n x \cdot s} \oplus 1 \\
\cdots c = \underbrace{x \oplus \cdots \oplus x}_{\pi_n x \cdot s} \oplus \underbrace{1 \oplus \cdots \oplus 1}_{\pi_n - 1 \text{ ones}}\n\end{cases}
$$

As \oplus is [recursive,](#page-34-2) we can decide whether the disjunction holds of a given d. Moreover, the spearch for such d always terminates:

• Euclidean division is provable in [PA](#page-35-0): for any $u, v \in M$ with $v \neq 0$, there are unique $q, r \in M$ such that $r \preccurlyeq v$ and $u = (v \otimes q) \oplus r$.

$$
PA \vdash \forall x.(x < \pi_1 \leftrightarrow (x = 0 \land x = 1 \land \cdots \land x = (1 + \cdots + 1));
$$

Combining these, we get that division of c by π_n in M leaves a unique quotient $d \in M$, and remainder $r \preccurlyeq \pi_{\underline{n}}$, which is either 0 or 1 or 1 \oplus 1 or …or $1 \oplus 1 \oplus \cdots \oplus 1$ ($\pi_n - 1$ times); i.e. one of the disjunctions from before.

Now we see that X is [recursive:](#page-34-2) if our search provides d such that

$$
\mathcal{M} \models c = \underbrace{d \oplus \cdots \oplus d}_{\pi_n \text{ times}},
$$

then $n \in X$, and if the search gives d satisfying one of the other disjunctions, then $n \notin X$.

This contradicts the choice of $X,$ so \oplus can't be [recursive.](#page-34-2)

Index

[F](#page-16-0) [18,](#page-17-2) [19,](#page-18-4) [23,](#page-22-0) [24](#page-23-0) [Gödel numbering](#page-33-0) [34,](#page-33-2) [35,](#page-34-5) [36,](#page-35-1) [41,](#page-40-3) [42](#page-41-2) [Gn](#page-33-1) [34,](#page-33-2) [35,](#page-34-5) [36,](#page-35-1) [41,](#page-40-3) [42](#page-41-2) [PA](#page-35-0) [36,](#page-35-1) [37](#page-36-1) α [-equivalent](#page-4-6) [5](#page-4-7) [Boolean algebra](#page-13-1) [13,](#page-12-0) [14,](#page-13-2) [15,](#page-14-2) [23](#page-22-0) β [-contraction](#page-5-2) 6 [bounded](#page-13-1) [13,](#page-12-0) [14,](#page-13-2) [15,](#page-14-2) [18](#page-17-2) β[-normal form](#page-6-2) [7,](#page-6-4) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-2) [26,](#page-25-1) [29,](#page-28-2) [34,](#page-33-2) [35](#page-34-5) β [-redex](#page-5-2) [6,](#page-5-3) [8](#page-7-1) β [-reduction](#page-5-0) [6,](#page-5-3) [7,](#page-6-4) [10](#page-9-2) [base theory of arithmetic](#page-35-0) [36](#page-35-1) [canonically coded](#page-42-1) [43,](#page-42-2) [45,](#page-44-2) [46](#page-45-0) [Church numeral](#page-28-0) [29,](#page-28-2) [33,](#page-32-0) [35](#page-34-5) [cn](#page-28-0) [29,](#page-28-2) [30,](#page-29-2) [31,](#page-30-2) [32,](#page-31-1) [33,](#page-32-0) [34,](#page-33-2) [35](#page-34-5) [complemented](#page-13-1) [13](#page-12-0) [composition](#page-24-3) [25,](#page-24-4) [32,](#page-31-1) [38](#page-37-2) [context](#page-4-2) [5,](#page-4-7) [6,](#page-5-3) [10](#page-9-2) [ctopbot](#page-29-1) [30,](#page-29-2) [31](#page-30-2) [decide](#page-34-2) [35,](#page-34-5) [43](#page-42-2) [decidable](#page-34-2) [35](#page-34-5) [decidable](#page-34-3) [35](#page-34-5)

[delz](#page-36-0) [37,](#page-36-1) [38,](#page-37-2) [39,](#page-38-1) [40,](#page-39-1) [41,](#page-40-3) [42,](#page-41-2) [43,](#page-42-2) [45](#page-44-2) [distributive](#page-13-1) [13,](#page-12-0) [14,](#page-13-2) [15,](#page-14-2) [16,](#page-15-1) [17,](#page-16-3) [18](#page-17-2) [filter](#page-19-0) [20,](#page-19-2) [21,](#page-20-4) [22](#page-21-1) [force](#page-18-3) [19,](#page-18-4) [20](#page-19-2) [forcing](#page-18-3) [19](#page-18-4) [forcing](#page-18-3) [19,](#page-18-4) [20,](#page-19-2) [21,](#page-20-4) [22](#page-21-1) [fixed-point combinator](#page-30-0) [31,](#page-30-2) [33,](#page-32-0) [34](#page-33-2) [h](#page-7-0) [9,](#page-8-0) [10](#page-9-2) [Heyting algebra](#page-14-0) [15,](#page-14-2) [16,](#page-15-1) [18,](#page-17-2) [19,](#page-18-4) [21,](#page-20-4) [22,](#page-21-1) [23](#page-22-0) [height](#page-7-0) [8,](#page-7-1) [9,](#page-8-0) [10](#page-9-2) [Heyting homomorphism](#page-14-0) [15,](#page-14-2) [23](#page-22-0) [himplies](#page-14-0) [15,](#page-14-2) [16,](#page-15-1) [18,](#page-17-2) [19,](#page-18-4) [21,](#page-20-4) [22,](#page-21-1) [23](#page-22-0) [hmodels](#page-14-1) [16,](#page-15-1) [21,](#page-20-4) [22](#page-21-1) H[-valid](#page-14-1) [15,](#page-14-2) [18](#page-17-2) H[-valuation](#page-14-1) [15,](#page-14-2) [21,](#page-20-4) [22](#page-21-1) [ifelse](#page-29-0) [30,](#page-29-2) [31,](#page-30-2) [33](#page-32-0) [IPC](#page-2-0) [3,](#page-2-1) [10,](#page-9-2) [11,](#page-10-0) [15,](#page-14-2) [16,](#page-15-1) [17,](#page-16-3) [18,](#page-17-2) [19,](#page-18-4) [22,](#page-21-1) [23,](#page-22-0) [24](#page-23-0) [Kripke model](#page-18-3) [19,](#page-18-4) [20,](#page-19-2) [21,](#page-20-4) [22](#page-21-1) λ [-abstraction](#page-4-2) [5,](#page-4-7) [8,](#page-7-1) [26,](#page-25-1) [27](#page-26-2) λ [-application](#page-4-2) [5,](#page-4-7) [26](#page-25-1) [lattice](#page-13-1) [13,](#page-12-0) [14,](#page-13-2) [15,](#page-14-2) [16,](#page-15-1) [17,](#page-16-3) [18,](#page-17-2) [20](#page-19-2) λ[-definable](#page-28-1) [29,](#page-28-2) [32,](#page-31-1) [33,](#page-32-0) [34](#page-33-2) λ[-define](#page-28-1) [29,](#page-28-2) [33,](#page-32-0) [34](#page-33-2) [lpa](#page-35-0) [37,](#page-36-1) [38,](#page-37-2) [39,](#page-38-1) [40,](#page-39-1) [41,](#page-40-3) [42,](#page-41-2) [43,](#page-42-2) [44,](#page-43-2) [45,](#page-44-2) [46](#page-45-0)

[Lindenbaum-Tarski algebra](#page-16-0) [17,](#page-16-3) [18](#page-17-2)

λ[-term](#page-4-2) [5,](#page-4-7) [6,](#page-5-3) [7,](#page-6-4) [11](#page-10-0) [lterms](#page-4-2) [5,](#page-4-7) [6,](#page-5-3) [8](#page-7-1) [lto](#page-4-5) [10](#page-9-2) [minimisation](#page-24-3) [25,](#page-24-4) [33,](#page-32-0) [38,](#page-37-2) [39](#page-38-1) [pair](#page-30-1) [32,](#page-31-1) [33](#page-32-0) [persistence](#page-18-3) [19](#page-18-4) [partial recursive](#page-24-3) [25,](#page-24-4) [34,](#page-33-2) [35,](#page-34-5) [37,](#page-36-1) [38](#page-37-2) [partial recursive function](#page-24-3) [25,](#page-24-4) [32,](#page-31-1) [34,](#page-33-2) [35,](#page-34-5) [44](#page-43-2) [prime](#page-20-2) [21,](#page-20-4) [22](#page-21-1) [primitive recursion](#page-24-3) [25,](#page-24-4) [32,](#page-31-1) [38](#page-37-2) [primitive recursive](#page-24-3) [25,](#page-24-4) [38](#page-37-2) [principal](#page-20-1) [20](#page-19-2) [projection](#page-24-3) [25](#page-24-4) [proper](#page-20-0) [20,](#page-19-2) [21,](#page-20-4) [22](#page-21-1) [principal up-set](#page-18-2) [19](#page-18-4) [pups](#page-18-2) [19](#page-18-4) [range](#page-4-2) [10,](#page-9-2) [11](#page-10-0) [recursive](#page-34-2) [35,](#page-34-5) [39,](#page-38-1) [41,](#page-40-3) [42,](#page-41-2) [43,](#page-42-2) [44,](#page-43-2) [45,](#page-44-2) [46,](#page-45-0) [47](#page-46-0) [recursive](#page-34-3) [35](#page-34-5) [recursive](#page-41-1) [42](#page-41-2) [reduces](#page-5-0) [6,](#page-5-3) [7,](#page-6-4) [9,](#page-8-0) [28](#page-27-1) [redex](#page-5-2) [6,](#page-5-3) [9,](#page-8-0) [10,](#page-9-2) [26,](#page-25-1) [27](#page-26-2) [reduction](#page-5-0) [6,](#page-5-3) [8,](#page-7-1) [9](#page-8-0) [recursively enumerable](#page-34-1) [35,](#page-34-5) [36,](#page-35-1) [37,](#page-36-1) [39,](#page-38-1) [42,](#page-41-2) [44,](#page-43-2) [45](#page-44-2) [represent](#page-39-0) [40,](#page-39-1) [41,](#page-40-3) [42](#page-41-2)

[represented](#page-39-0) [40,](#page-39-1) [41](#page-40-3) [representable](#page-39-0) [40,](#page-39-1) [41](#page-40-3) [representation](#page-39-0) [40](#page-39-1) [recursively inseparable](#page-43-0) [44,](#page-43-2) [45](#page-44-2) [state](#page-18-3) [19](#page-18-4) [simply typed](#page-4-2) λ -term [5,](#page-4-7) [7,](#page-6-4) [10](#page-9-2) [stype](#page-4-1) [5,](#page-4-7) [6,](#page-5-3) [8,](#page-7-1) [10,](#page-9-2) [12](#page-11-0) [subst](#page-4-4) [6,](#page-5-3) [27,](#page-26-2) [28](#page-27-1) [successor](#page-24-3) [25,](#page-24-4) [32](#page-31-1) [succ](#page-31-0) [32,](#page-31-1) [33](#page-32-0) [term](#page-4-2) [5,](#page-4-7) [7,](#page-6-4) [8](#page-7-1) [tob](#page-5-0) [6,](#page-5-3) [7,](#page-6-4) [8,](#page-7-1) [10,](#page-9-2) [12,](#page-11-0) [13,](#page-12-0) [25,](#page-24-4) [26,](#page-25-1) [27,](#page-26-2) [28,](#page-27-1) [29,](#page-28-2) [30,](#page-29-2) [31,](#page-30-2) [33,](#page-32-0) [34](#page-33-2) [tobev](#page-6-1) [7,](#page-6-4) [26,](#page-25-1) [27,](#page-26-2) [28,](#page-27-1) [29](#page-28-2) [toe](#page-9-1) [13](#page-12-0) [total recursive](#page-24-3) [25,](#page-24-4) [35,](#page-34-5) [36,](#page-35-1) [37,](#page-36-1) [41,](#page-40-3) [42,](#page-41-2) [44](#page-43-2) [typability relation](#page-4-3) [5](#page-4-7) [trel](#page-4-3) [6,](#page-5-3) [7,](#page-6-4) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-2) [11,](#page-10-0) [12,](#page-11-0) [13](#page-12-0) [terminal segment](#page-18-0) [19,](#page-18-4) [20](#page-19-2) [tsegs](#page-18-1) [19](#page-18-4) [tstar](#page-25-0) [26,](#page-25-1) [27,](#page-26-2) [28](#page-27-1) [Takahashi translation](#page-25-0) [26,](#page-25-1) [27](#page-26-2) [type](#page-4-1) [5,](#page-4-7) [6,](#page-5-3) [8](#page-7-1) λ[-term](#page-24-2) [25,](#page-24-4) [26,](#page-25-1) [27,](#page-26-2) [28,](#page-27-1) [29,](#page-28-2) [30,](#page-29-2) [31,](#page-30-2) [32,](#page-31-1) [34,](#page-33-2) [35](#page-34-5) [term](#page-24-2) [25,](#page-24-4) [28,](#page-27-1) [29,](#page-28-2) [31,](#page-30-2) [32,](#page-31-1) [33](#page-32-0) [valuation](#page-14-1) [15,](#page-14-2) [16,](#page-15-1) [18,](#page-17-2) [19](#page-18-4)

[wforces](#page-19-1) [21](#page-20-4)

[world](#page-18-3) [19,](#page-18-4) [20](#page-19-2)

[zero](#page-24-3) [25](#page-24-4)