
Logic and
Computability

Daniel Naylor

December 4, 2024

Contents

1 Non-classical Logic 2

1.1 Intuitionistic Logic . 2

1.2 The simply typed λ-calculus . 5

1.3 The Curry-Howard Correspondence . 10

1.4 Semantics for IPC . 14

1.5 Negative translations . 22

2 Computability 25

2.1 Recursive functions and λ-computability . 25

2.2 Decidability in Logic . 35

Index 48
Lecture 1

1

1 Non-classical Logic

1.1 Intuitionistic Logic

Idea: a proof of ϕ→ ψ is a “procedure” that comments a proof of ϕ into a proof of ψ.

In particular, ¬¬ϕ is not always the same as ϕ.

Fact: The law of excluded middle (ϕ ∨ ¬ϕ) is not generally intuitionistically valid.

Moreover, the Axiom of Choice is incompatible with intuitionistic set theory.

We take choice to mean that any family of inhabited sets admits a choice function.

Theorem 1.1.1 (Diaconescu). The law of excluded middle can be intuitionistically deduced
from the Axiom of Choice.

Proof. Let ϕ be a proposition. By the Axiom of Separation, the following are sets (i.e. we can construct
a proof that they are sets):

A := {x ∈ {0, 1} : ϕ ∨ (x = 0)} B := {x ∈ {0, 1} : ϕ ∨ (x = 1)}.

As 0 ∈ A and 1 ∈ B, we have that {A,B} is a family of inhabited sets, thus admits a choice function
f : {A,B} → A ∪B by the Axiom of Choice. This satisfies f(A) ∈ A and f(B) ∈ B by definition.

Thus we have
(f(A) = 0 ∨ ϕ) ∧ (f(B) = 1 ∨ ϕ)

and f(A), f(B) ∈ {0, 1}. Now f(A) ∈ {0, 1} means that (f(A) = 0) ∨ (f(A) = 1) and similarly for
f(B).

We can have the following:

(1) We have a proof of f(A) = 1, so ϕ ∨ (1 = 0) has a proof, so we must have a proof of ϕ.

(2) We have a proof of f(B) = 0, which similarly gives a proof of ϕ.

(3) We have f(A) = 0 and f(B) = 1, in which case we can prove 6 ϕ: given a proof of φ, we can prove
that A = B (by Extensionality), in which case 0 = f(A) = f(B) = 1, a contradiction.

So we can always specify a proof of ϕ or a proof of ϕ or a proof of ¬ϕ.

Why bother?

• Intuitionistic maths is more general: we assume less.

2

• Several ntions that are conflated in classical maths are genuinely different constructively.

• Intuitionistic proofs have a computable content that may be absent in classical proofs.

• Intuitionistic logic is the internal logic of an arbitrary topos.

Let’s try to formalise the BHK interpretation of logic.

We will inductively define a provability relation by enforcing rules that implement the BHK interpre-
tation.

We will use the notation Γ ` ϕ to mean that ϕ is a consequence of the formulae in the set Γ.Lecture 2

Rules for Intuitionistic Propositional Calculus (IPC)

(∧-I) Γ`A,Γ`B
Γ`A∧B

(∨-I) Γ`A
Γ`A∨B , Γ`B

Γ`A∨B

(∧-E) Γ`A∧B
Γ`A and Γ`A∧B

Γ`B

(∨-E) Γ,A`C Γ,B`C Γ`A∨B
Γ`C

(→-I) Γ,A`B
Γ`A→B

(→-E) Γ`A→B,Γ`A
Γ`B

(⊥-E) Γ`⊥
Γ`A for any A

(Ax) Γ,A`A for any A

(Weak) Γ`B
Γ,A`B

(Contr) Γ,A,A`B
Γ,A`B

We obtain classical propositional logic (CPC) by adding either:

• Γ`A∨¬A

• Γ,¬A`⊥
Γ`A (reductio ad absurdum)

3

By
[A]
...
X

[B]
...
Y

C
(A,B)

we mean ‘if we canprove X assuming A and we can prove Y assuming B, then we can infer C by
“discharching / closing” the open assumptions A and B’.

In particular, the (→-I)-rule can be written as
Γ, [A]
...
B

Γ ` A→ B
(A).

We obtain intiuitionistic first-order logic (IQC) by adding rules for quantification:

(∃-I) Γ`ϕ[x:=t]
Γ`∃x.ϕ(x) , where t is a term.

(∃-E) Γ`∃x.ϕ Γ,ϕ`ψ
Γ`ψ , if x is not free in Γ, ψ.

(∀-I) Γ`ϕ
Γ`∀x.ϕ if x is not free in Γ.

(∀-E) Γ`∀x.ϕ(x)
Γ`ϕ[x:=t] , where t is a term.

Example 1.1.2. Let’s give a natural deduction proof of A ∧B → B ∧A.
[A∧B]
A

[A∧B]
B

B∧A
A ∧B → B ∧A

(A ∧B).

Example 1.1.3. Let’s prove the Hilbert-style axioms ϕ → (ψ → ϕ) and (ϕ → (ψ → χ)) →
((ϕ→ psi) → (ϕ→ χ)).

[ϕ] [ψ]
ψ→ϕ (ψ)

ϕ→ (ψ → ϕ)
(ϕ)

[ϕ→ (ψ → χ)] [ϕ→ ψ] [ϕ] (toE)
ψ → χ ψ (toE)

χ (toI,ψ)
ϕ→ χ (toI, ϕ→ψ)

(ϕ→ ψ) → (ϕ→ χ) (toI, (ϕ→(ψ→χ)))
(ϕ→ (ψ → χ)) → ((ϕ→ ψ) → (ϕ→ χ))

If Γ is a set of propositions in the language and ϕ is a poroposition, we write Γ `IPC ϕ, Γ `IQC ϕ,
Γ `CPC ϕ, Γ `CQC ϕ, if there is a proof of ϕ from Γ in the respective logic.

4

Lemma 1.1.4. If Γ `IPC ϕ, then Γ, ψ `IPC ϕ for any proposition ψ. Moreover, if p is a
primitive proposition and ψ is any proposition, then

Γ[p := ψ] `IPC ϕ[p := ψ].

Proof. Induction over the size of proofs.

1.2 The simply typed λ-calculus

For now we assume given a set Π of simple types generated by a grammar

Π := U |Π → Π,

where U is a countable set of type variables, as well as an inifinite set V of variables.Lecture 3

Definition 1.2.1 (Simply typed lambda-term). The set ΛΠ of simply typed λ-terms is defined
by the grammar

ΛΠ := V︸︷︷︸
variables

| λV : Π.ΛΠ︸ ︷︷ ︸
λ-abstraction

| ΛΠΛΠ︸ ︷︷ ︸
λ-application

.

A context is a set of pairs {x1 : τ1, . . . , xn : τn} where the xi are (distinct) variables and each
τi ∈ Π. We write C for the set of all possible contexts. Given a context Γ ∈ C, we also write
Γ, x : τ for the context Γ ∪ {x : τ} (if x dous not appear in Γ).
The domain of Γ is the set of variables that occur in it, and the range |Γ| is the set of types
that it manifests.

Definition 1.2.2 (Typability relation). We define the typability relation ⊆ C × ΛΠ ×Π via:

(1) For every context Γ, and variable x not occurring in Γ, and type τ , we have Γ, x : τ x : τ .

(2) Let Γ be a context, x a variable not occurring in Γ, and let σ, τ ∈ Π be types, and M be a
λ-term. If Γ, x : σ M : τ , then Γ (λx : σ.M) : (σ → τ).

(3) Let Γ be a context, σ, τ ∈ Π be types, and M,N ∈ ΛΠ be terms. If Γ M : (σ → τ) and
Γ N : σ, then Γ (MN) : τ .

Notation. We will refer to the λ-calculus of ΛΠ with this typability relation as λ(→).

A variable x occurring in a λ-abstraction λx : σ.M is bound, and it is free otherwise. We say that
terms M and N are α-equivalent if they differ only in the names of the bound variables.

If M and N are λ-terms and x is a variable, then we define the substitution of N for x in M by:

• x[x := N] = N ;

5

• y[x := N] = y if x 6= y;

• (PQ)[x := N] = P [x := N]Q[x := N] for λ-terms P,Q;

• (λy : σ.P)[x := N] = λy : σ.(P [x := N]), where x 6= y and y is not free in N .

Definition 1.2.3 (beta-reduction). The β-reduction relation is the smallest relation →β on ΛΠ

closed under the following rules:

• (λx : σ.P)Q→β P [x := Q],

• if P →β P
′, then for all variables x and types σ ∈ Π, we have λx : σ.P →β λx : σ.P ′,

• P →β P
′ and z as a λ-term, then PZ →β P

′Z and ZP →β ZP
′.

We also define β-equivalence ≡β as the smallest equivalence relation containing →β .

Example 1.2.4 (Informal). We have (λx : Z.(λy : τ.x))Z →β (λy : τ.Z).

When we reduce (λx : σ.P)Q, the term being reduced is called a β-redex, and the result is its β-
contraction.

Lemma 1.2.5 (Free variables lemma). Assuming that:

• Γ M : σ

Then

(1) If Γ ⊆ Γ′, then Γ′ M : σ.

(2) The free variables of M occur in Γ.

(3) There is a context Γ∗ ⊆ Γ comprising exactly the free variables in M , with Γ∗ M : σ.

Proof. Exercise.

Lecture 4

Lemma 1.2.6 (Generation Lemma).

(1) For every variable x, context Γ, and type σ, if Γ x : σ, then x : σ ∈ Γ;

(2) If Γ (MN) : σ, then there is a type τ such that Γ M : τ → σ and Γ N : τ ;

(3) If Γ (λx.M) : σ, then there are types τ and ρ such that Γ, x : τ M : ρ and σ = (τ → ρ).

6

Lemma 1.2.7 (Substitution Lemma).

(1) If Γ M : σ and α is a type variable, then Γ[α := τ] M : σ[α := τ];

(2) If Γ, x : τ M : σ and Γ M : τ , then Γ M [x := N] : σ.

Proposition 1.2.8 (Subject reduction). Assuming that:

• Γ M : σ

• M →β N

Then Γ N : σ.

Proof. By induction on the derivation of M →β N , using Lemma 1.2.6 and Lemma 1.2.7.

Notation. We will writeM �β N ifM reduces to N after (potentially multiple) β-reductions.

Theorem 1.2.9 (Church-Rosser for lambda(->)). Assuming that:

• Γ M : σ

• M �β N1

• M �β N2

Then there is a λ-term L such that N1 �β L, N2 �β L, and Γ L : σ.

Pictorially:
M

N1 N2

L

β β

β β

Definition (β-normal form). A λ-term M is in β-normal form if there is no term N such that
M →β N .

Corollary 1.2.10 (Uniqueness of normal form). If a simply typed λ-term admits a β-normal
form, then it is unique.

7

Proposition 1.2.11 (Uniqueness of types).

(1) If Γ M : σ and Γ M : τ , then σ = τ .

(2) If Γ M : σ, Γ N : τ , and M ≡β N , then σ = τ .

Proof.

(1) Induction.

(2) By the hypothesis and Church-Rosser for lambda(->), there is a term L which both M and N
reduce to. By Lemma 1.2.7, we have Γ L : σ and Γ L : τ , so σ = τ by (1).

Example 1.2.12. There is no way to assign a type to λx : x.x. If x is of type τ , then in order
to apply x to x, it has to be of type τ → σ for some σ. But τ 6= τ → σ.

Definition 1.2.13 (Height). The height function is the recursively defined map h : Π → N that
maps a type variable to 0, and a function type σ → τ to 1 + max(h(σ), h(τ)).
We extend the height function from types to β-redexes by taking the height of its λ-abstraction.

Not.: (λx : σ.P τ)σ→τRσ.

Theorem 1.2.14 (Weak normalisation for lambda(->)). Assuming that:
• Γ M : σ

Then there is a finite reduction path M :=M0 →β M1 →β M2 →β · · · →β Mn, where Mn is in
β-normal form.

8

Proof (“Taming the Hydra”). The idea is to apply induction on the complexity ofM . Define a function
m : ΛΠ → N× N by

m(M) =

{
(0, 0) if M is in β-normal form
(h(M), redex(M)) otherwise

,

where h(M) is the greatest height of a redex in M , and redex(M) is the number of redexes in M of
that height.

We will use induction over ω×ω to show that if M is typable, then it admits a reduction to β-normal
form.

Problem: reductions can copy redexes or create new ones.

Strategy: always reduce the right most redex of maximum height.

We will argue that by following this strategy, any new redexes we generate have to be lower than the
height of the redex we picked to reduce.Lecture 5

If Γ M : σ and M is already in β-normal form, then claim is trivially true. If M is not in β-normal
form, let ∆ be the rightmost redex of maximal height h.

By reducing ∆, we may introduce copies of existing redexes, or create new ones. Creation of new
redexes of ∆ has to happen in one of the following ways:

(1) If ∆ is of the form (λx : (ρ → µ) . . . xP ρ . . .)(λy : ρ.Qµ)P→µ, then it reduces to . . . (λy :
ρ.Qµ)ρ→µPµ . . ., in which case there is a new redex of height h(ρ→ µ) < h.

9

(2) We have ∆ = (λx : τ.(λy : ρ.Rµ))P τ occuring in M in the scenario ∆ρ→µQρ. Say ∆ reduces to
λy : ρ.Rµ1 . Then we create a new redex of height h(ρ→ µ) < h(τ → (ρ→ µ)) = h.

(3) The last possibility is that ∆ = (λx : (ρ→ µ).x)(λy : ρ.Pµ), and that it occurs in M as ∆ρ→µQρ.
Reduction then gives the redex (λy : ρ.Pµ)ρ→µQρ of height h(ρ→ µ) < h.

Nowe ∆ itself is gone (lowering the count by 1), and we just showed that any newly created redexes
have height < h.

If we have ∆ = (λx : τ.P ρ)Qτ and P contains multiple free occurrences of x, then all the redexes in Q
are multiplied when performing β-reduction.

However, our choice of ∆ ensures that the height of any such redex in Q has height < h, as they occur
to the right of ∆ in M . It is this always the case that m(M ′) < m(M) (in the lexicographic order), so
by the induction hypothesis, M ′ can be reduced to β-normal form (and thus so can M).

Theorem 1.2.15 (Strong Normalisation for lambda(->)). Assuming that:

• Γ M : σ

Then there is no infinite reduction sequence M →β M1 →β · · · .

Proof. See Example Sheet 1.

1.3 The Curry-Howard Correspondence

Propositions-as-types: idea is to think of ϕ as the “type of its proofs”.

The properties of the STλC match the rules of IPC rather precisely.

First we will show a correspondence between λ(→) and the implicational fragment IPC(→) of IPC
that includes only the → connective, the axiom scheme, and the (→ −I) and (→ −E) rules. We will
later extend this to the whole of IPC by introducing more complex types to λ(→).

Start with IPC(→) and build a STλC out of it whose set of type variables U is precisely the set of
primtive propositions of the logic.

Clearly, the set Π of types then matches the set of propositions in the logic.Lecture 6

Comment: λx : σ.(Mx) →η M if x is not free in M .

Proposition 1.3.1 (Curry-Howard for IPC(->)). Assuming that:

• Γ is a context for λ(→)

10

• ϕ a proposition

Then

(1) If Γ M : ϕ, then |Γ| = {τ ∈ Π : (x : τ) ∈ Γ for some x} `IPC(→) ϕ

(2) If Γ `IPC(→), thene there is a simply typed λ-term M ∈ λ(→) such that {(xψ : ψ) | ψ ∈
Γ} M : ϕ.

Proof.

(1) We induct over the derivation of Γ M : ϕ.
If x is a variable not occurring in Γ′ and the derivation is of the form Γ′, x : ϕ x : ϕ, then we’re
supposed to prove that |Γ′, x : ϕ| ` ϕ. But that follows from ϕ ` ϕ as |Γ′, x : ϕ| = |Γ′| ∪ {ϕ}.
If the derivation has M of the form λx : σ.N and ϕ = σ → τ , then we must have Γ, x : σ N : τ .
By the induction hypothesis, we have that |Γ, x : σ| ` τ , i.e. |Γ|, σ ` τ . But then |Γ| ` σ → τ by
(→-I).
If the derivation has the form Γ (PQ) : ϕ, then we must have Γ P : (σ → ϕ) and Γ Q : σ.
By the induction hypothesis, we have that |Γ| ` σ → ϕ and |Γ| ` σ, so |Γ| ` ϕ by (→-E).

(2) Again, we induct over the derivation of Γ ` ϕ. Write ∆ = {(xψ : ψ) | ψ ∈ Γ}. Then we only have
a few ways to construct a proof at a given stage. Say the derivation is of the form Γ, ϕ ` ϕ. If
ϕ ∈ Γ, then clearly ∆ xϕ : ϕ, and if ϕ /∈ Γ then ∆, xϕ : ϕ xϕ : ϕ.
Suppose the derivation is at a stage of the form

Γ ` ϕ→ ψ Γ ` ϕ
Γ ` ψ

.

Then by the induction hypothesis, there ar λ-terms M and N such that ∆ M : (ϕ → ψ) and
∆ N : ϕ, from which ∆ (MN) : ϕ.
Finally, if the stage is given by

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

,

then we have two subcases:

• If ϕ ∈ Γ, then the induction hypothesis gives ∆ M : ψ for some term M . By weakening,
we have ∆, x : ϕ M : ψ, where x does not occur in ∆. But then ∆ (λx : ϕ.M) : (ϕ→ ψ)
as needed.

• If ϕ /∈ Γ, then the induction hypothesis gives ∆, xϕ : ϕ M : ψ for some M , thus ∆ (λxϕ :
ϕ.M) : (ϕ→ ψ) as needed.

11

Example 1.3.2. Let ϕ,ψ be primitive propositions. The λ-term

λf : (ϕ→ ψ) → ϕ.λ : ϕ→ ψ.
︷ ︸︸ ︷
g(fg︸︷︷︸

ϕ

)

ψ

has type ((ϕ → ψ) → ϕ) → ((ϕ → ψ) → ψ), and therefore encodes a proof of that proposition
in IPC(→).
g : ϕ→ ψ, f : (ϕ→ ψ) → ϕ.

g : [ϕ→ ψ] f : [(ϕ→ ψ) → ϕ] (toE)
fg : ϕ g : [ϕ→ ψ] (toE)

g(fg) : ψ (toI, ϕ→ψ)
λg.g(fg) : (ϕ→ ψ) → ψ (toI, (ϕ→ψ) →ϕ)

λf.λg.g(fg) : ((ϕ→ ψ) → ϕ) → ((ϕ→ ψ) → ψ)

Definition 1.3.3 (Full STlambdaC). The types of the full symply typed λ-calculus are gener-
ated by the following grammar:

Π := U | Π → Π | Π×Π | Π+Π | 0 | 1,

where U is a set of type variables (usually countable).
Its terms are given by ΛΠ given by:

ΛΠ := V |λV : Π.ΛΠ | ΛΠΛΠ|Π1(ΛΠ)|Π2(ΛΠ)|ι1(ΛΠ)|ι2(ΛΠ)| case(ΛΠ;V.ΛΠ;V.ΛΠ)| ∗ |!ΠΛΠ,

where V is an infinite set of variables, and ∗ is a constant.
Lecture 7

We have new typing rules:

• ΓM :ψ×ϕ
Γπ1(M):ψ

• ΓM :ψ×ϕ
Γπ2(M):ϕ

• ΓM :ψ
Γι1(M):ψ+ϕ

• ΓN :ϕ
Γι2(N):ψ+ϕ

• ΓM :ψ ΓN :ϕ
Γ〈M,N〉:ϕ×ψ

• ΓL:ψ+ϕ Γ,x:ψM :ρ Γ,y:ϕN :ρ
Γcase(L;xψ.M ;xϕ.N)

• Γ∗:1

• ΓM :0
Γ!ϕM :ϕ for each ϕ ∈ Π

12

They come with new reduction rules:

• Projections: π1〈M,N〉 →β M and π2〈M,N〉 →β N

• Pairs: 〈π1M,π2M〉 →η M

• Definition by cases: case(ι1(M);xK; y.L) →β K[x := M] and case(ι2(M);x.K; y.L) →β

L[y :=M]

• Unit: If Γ M : 1, then M →η ∗

When setting up Curry-Howard with these new types, we let:

• 0 !⊥

• × ! ∧

• + ! ∨

• →!→

Example 1.3.4. Consider the following proof of (ϕ ∧ χ) → (ψ → ϕ):

[ϕ∧χ]
ϕ [ψ] ()
ψ → ϕ ()

(ϕ ∧ χ) → (ψ → ϕ)

We decorate this proof by turning the assumptions into variables and following the Curry-
Howard correspondence:

[ϕ∧χ]:p
ϕ:π1(p)

[ψ] : b ()
ψ → ϕ : λb : ψ.π1(p) ()
(ϕ ∧ χ) → (ψ → ϕ)

STλC IPC
(primitive) types (primitive) propositions

variable hypothesis
STλ-term proof

type constructor logical connective
term inhabitation provability
term reduction proof normalisation

13

1.4 Semantics for IPC

Definition 1.4.1 (Lattice). A lattice is a set L equipped with binary commutative and asso-
ciative operations ∧ and ∨ that satisfy the absorption laws:

a ∨ (a ∧ b) = a; a ∧ (a ∨ b) = a,

for all a, b ∈ L.
A lattice is:

• Distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L.

• Bounded if there are elements ⊥,> ∈ L such that a ∨ ⊥ = a and a ∧ > = a.

• Complemented if it is bounded and for every a ∈ L there is a∗ ∈ L such that a ∧ a∗ = ⊥
and a ∨ a∗ = >.

A Boolean algebra is a complemented distributive lattice.

Note that ∧ and ∨ are idempotent in any lattice. Moreover, we can define an ordering on L by setting
a ≤ b if a ∧ b = a.

Example 1.4.2.

(1) For every set I, the power set P(I) with ∧ := ∩ and ∨ := ∪ is the prototypical Boolean
algebra. More generally, the clopen subsets of a topological space form a Boolean algebra.
Interestingly: every Boolean algebra corresponds to a Boolean algebra constructed in this
way.

(2) The set of finite and cofinite subsets of Z is a Boolean algebra.

(3) The set of Zariski-closed subsets of the affine variety Cn is a distributive lattice but not a
Boolean algebra.

Lecture 8

Proposition 1.4.3. Assuming that:

• L is a bounded lattice

• ≤ is the order induced by the operations in L (a ≤ b if a ∧ b = a)

Then ≤ is a partial order with least element ⊥, greatest element >, and for any a, b ∈ L, we
have a ∧ b = inf{a, b} and a ∧ b = sup{a, b}. Conversely, every partial order with all finite infs
and sups is a bounded lattice.

Proof. Exercise.

14

Classically, we say that Γ |= t if for every valuation v : L→ {0, 1} with v(p) = 1 for all p ∈ Γ we have
v(t) = 1.

We might want to replace {0, 1} with some other Boolean algebra to get a semantics for IPC, with an
accompanying Completeness Theorem. But Boolean algebras believe in the Law of Excluded Middle!

Definition 1.4.4 (Heyting algebra). A Heyting algebra is a bounded lattice equipped with a
binary operation ⇒: H ×H → H such that

a ∧ b ≤ c ⇐⇒ a ≤ (b⇒ c)

for all a, b, c ∈ L.
A morphism of Heyting algebras is a function that preserves all finite meets, finite joins, and
⇒.

Example 1.4.5.

(1) Every Boolean algebra is a Heyting algebra: define a ⇒ b := a∗ ∨ b, where a∗ is the
complement of a. Note that we must have a∗ = (a⇒ ⊥).

(2) Every topology on a set X is a Heyting algebra, where

(U ⇒ V) := int((X \ U) ∪ V).

(3) A finite distributive lattice has to be a Heyting algebra (see Example Sheet 2).

Definition 1.4.6 (Valuation in Heyting algebras). Let H be a Heyting algebra and L be a
propositional language with a set P of primitive propositions. An H-valuation is a function
v : P → H, extended to the whole of L recursively by setting:

• v(⊥) = ⊥,

15

• v(A ∧B) = v(A) ∧ v(B),

• v(A ∨B) = v(A) ∨ v(B),

• v(A→ B) = v(A) ⇒ v(B).

A proposition A is H-valid if v(A) = > for all H-valuations v, and is an H-consequence of a
(finite) set of propositions Γ if v(

∧
Γ) ≤ v(A) for all H-valuations v (written Γ |=H A).

Lemma 1.4.7 (Soundness of Heyting semantics). Assuming that:

• H is a Heyting algebra

• v : L→ H is a valuation

Then Γ `IPC A implies Γ |=H A.

Proof. By induction over the structure of the proof Γ ` A.

(Ax) As v((
∧
Γ) ∧A) = v(

∧
) ∧ v(A) ≤ v(A) for any Γ and A.

(∧-I) A = B ∧ C and we have derivations Γ1 ` B, Γ2 ` C, with Γ1,Γ2 ⊆ Γ. By the induction
hypothesis, we have v(

∧
Γ) ≤ v(

∧
Γ1) ∩ v(

∧
Γ2) ≤ v(B) ∧ v(C) = v(B ∧ C) = v(A), i.e.

Γ |=H A.

(→-I) A = B → C and so we must have Γ ∪ {B} ` C. By induction hypothesis, we have v(
∧
Γ) ∧

v(B) = v(
∧
γ ∧ B) ≤ v(C). By the definition of ⇒, this implies v(

∧
Γ) ≤ [v(B) ⇒ v(C)] =

v(B → C) = v(A), i.e. Γ |=H A.

(∨-I) A = B ∨ C and without loss of generality we have a derivation Γ ` B. By the induction
hypothesis we have v(

∧
Γ) ≤ v(B), but v(B∨C) = v(B)∨v(C), and hence v(B) ≤ v(B∨C) =

v(A).Lecture 9

(∧-E) By the induction hypothesis, we have v(
∧
Γ) ≤ v(B ∧ C) = v(B) ∧ v(C) ≤ v(B), v(B).

(→-E) We know that v(A → B) = (v(A) ⇒ v(B)). From v(A → B) ≤ v(A) ⇒ v(B), we derive
v(A) ∧ v(A → B) ≤ v(B) by definition of ⇒. So if v(

∧
Γ) ≤ v(A → B) and v(

∧
Γ) ≤ v(A),

then v(
∧
Γ) ≤ v(B), as needed.

(∨-E) By induction hypothesis: v(A ∨
∧
Γ) ≤ v(C), v(B ∨

∧
Γ) ≤ v(C) and v(

∧
Γ) ≤ v(A ∨ B) =

v(A) ∨ v(B). This last fact means that v(
∧
Γ) ∧ (v(A) ∨ v(B)) = v(

∧
Γ). Now this is the

same as (v(
∧
Γ) ∧ v(A)) ∨ (v(

∧
Γ) ∧ v(B)) as Heyting algebras are distributive lattices (see

Example Sheet 2), and this is ≤ v(C) by the first two inequalities of this paragraph.

(⊥-E) If v(
∧
Γ) ≤ v(⊥) = ⊥, then v(

∧
Γ) = ⊥, in which case v(

∧
Γ) ≤ v(A) for any A by minimality

of ⊥ in H.

16

Example 1.4.8. The Law of Excluded Middle is not intuitionistically valid. Let p be a primitive
proposition and consider the Heyting algebra given by the topology {∅, {1}, {1, 2}} on {1, 2}.
We can define a valuation v with v(p) = {1}, in which case v(¬p) = ¬{1} = int(X \ {1}) = ∅.
So v(p∨¬p) = {1}∨∅ = {1} 6= >. Thus Soundness of Heyting semantics implies that 6`IPC p∨¬p.

Example 1.4.9. Peirce’s Law ((p→ q) → p) → p is not intuitionistically valid.
Take the valuation on the usual topology of R2 that maps p to R2 \ {(0, 0)} and q to ∅.

Classical completeness: Γ `CPC A if and only if Γ |=2 A.

Intuitionistic completeness: no single finite replacement for 2.

Definition (Lindenbaum-Tarski algebra). Let Q be a logical doctrine (CPC, IPC, etc), L be a
propositional language, and T be an L-theory. The Lindenbaum-Tarski algebra FQ(T) is built
in the following way:

• The underlying set of FQ(T) is the set of equivalence classes [ϕ] of propositions ϕ, where
ϕ ∼ ψ when T, ϕ `Q ψ and T, ψ `Q ϕ;

• If ./ is a logical connective in the fragment Q, we set [ϕ] ./ [ψ] := [ϕ ./ ψ] (should check
well-defined: exercise).

We’ll be interested in the case Q = CPC, Q = IPC, and Q = IPC \ {→}.

Proposition 1.4.10. The Lindenbaum-Tarski algebra of any theory in IPC\{→} is a distribu-
tive lattice.

Proof. Clearly, ∧ and ∨ inherit associativity and commutativity, so in order for F IPC\{→}(T) to be a
lattice we need only to check the absorption laws:

[ϕ] ∨ [ϕ ∧ ψ] = [ϕ] (α)
[ϕ] ∧ [ϕ ∨ ψ] = [ϕ] (β)

Equation (α) is true since T, ϕ `IPC\{→} ϕ ∨ (ϕ ∧ ψ) by (∨-I), and also T, ϕ ∨ (ϕ ∧ ψ) `IPC\{→} ϕ by
(∨-E). Equation (β) is similar.

Now, for distributivity: T, ϕ ∧ (ψ ∨ χ) ` (ϕ ∧ ψ) ∨ (ϕ ∧ χ) by (∧-E) followed by (∨-E):

ϕ ∧ (ψ ∨ χ) (∧-E)
ϕ ψ ∨ χ (∨-E)

(ϕ ∧ ψ) ∨ (ϕ ∧ χ)

Conversely, T, ((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) ` ϕ ∧ (ψ ∨ χ) by (∨-E) followed by (∧-I).

17

Lecture 10

Lemma 1.4.11. The Lindenbaum-Tarski algebra of any theory relative to IPC is a Heyting
algebra.

Proof. We already saw that F IPC(T) is a distributive lattice, so it remains to show that [ϕ] ⇒ [ψ] :=
[ϕ→ ψ] gives a Heyting implication, and that F IPC(T) is bounded.

Suppose that [ϕ ∧ [ψ] ≤ [χ], i.e. τ, ϕ ∧ ψ `IPC χ. We want to show that [ϕ] ≤ [ψ → χ], i.e.
τ, ϕ ` (ψ → χ). But that is clear:

ϕ [ψ]
ϕ ∧ ψ (hyp)
χ (→-I, ψ)

ψ → χ

Conversely, if τ, ϕ ` (ψ → χ), then we can prove τ, ϕ ∧ ψ ` χ:

ϕ ∧ ψ (∧-E)
ϕ ψ (hyp)

ψ → χ ψ (→-E)
χ

So defining [ϕ] ⇒ [ψ] := [ϕ→ ψ] provides a Heyting ⇒.

The bottom element of F IPC(T) is just [⊥]: if [ϕ] is any element, then T,⊥ `IPC ϕ by ⊥-E.

The top element is > := [⊥ → ⊥: if ϕ is any proposition, then [ϕ] ≤ [⊥ → ⊥] via

ϕ [⊥] (⊥-E)⊥
⊥ → ⊥

Theorem 1.4.12 (Completeness of the Heyting semantics). A proposition is provable in IPC
if and only if it is H-valid for every Heyting algebra H.

Proof. One direction is easy: if `IPC ϕ, then there is a derivation in IPC, thus > ≤ v(ϕ) for any
Heyting algebra H and valuation v, by Soundness of Heyting semantics. But then v(ϕ) = > and ϕ is
H-valid.

18

For the other direction, consider the Lindenbaum-Tarski algebra F (L) of the empty theory relative
to IPC, which is a Heyting algebra by Lemma 1.4.11. We can define a valuation v by extending
P → F (L), p 7→ [p] to all propositions.

As v is a valuation, it follows by induction (and the construction of F (L)) that v(ϕ) = [ϕ] for all
propositions.

Now ϕ is valid in every Heyting algebra, and so is valid in F (L) in particular. So v(ϕ) = > = [ϕ],
hence > → > `IPC ϕ, hence `IPC ϕ.

Given a poset S, we can construct sets a ↑:= {s ∈ S : a ≤ s} called principal up-sets.

Recall that U ⊆ S is a terminal segment if a ↑⊆ U for each a ∈ U .

Proposition 1.4.13. If S is a poset, then the set T (S) = {U ⊆ S :
U is a terminal segment of S} can be made into a Heyting algebra.

Proof. Order the terminal segments by ⊆. Meets and joins are ∩ and ∪, so we just need to define ⇒.
If U, V ∈ T (S), define (U ⇒ V) := {s ∈ S : (s ↑) ∩ U ⊆ V }.

If U, V,W ∈ T (S), we have

W ⊆ (U ⇒ V) ⇐⇒ (w ↑) ∩ U ⊆ V ∀w ∈W,

which happens if for every w ∈ W and u ∈ U we have w ≤ u =⇒ u ∈ V . But W is a terminal
segment, so this is the same as saying that W ∩ U ⊆ V .

Definition 1.4.14 (Kripke model). Let P be a set of primitive propositions. A Kripke model
is a tuple (S,≤,) where (S,≤) is a poset (whose elements are called “worlds” or “states”,
and whose ordering is called the “accessibility relation”) and ⊆ S × P is a binary relation
(“forcing”) satisfying the persistence property: if p ∈ P is such that s p and s ≤ s′, then
s′ p.

Every valuation v on T (S) induces a Kripke model by setting s p is s ∈ v(p).Lecture 11

Definition 1.4.15 (Forcing relation). Let (S,≤,) be a Kripke model for a propositional
language. We define the extended forcing relation inductively as follows:

• There is no s ∈ S with s ⊥;

• s ϕ ∧ ψ if and only if s ϕ and s ψ;

• s ϕ ∨ ψ if and only if s ϕ or s ψ;

• s (ϕ→ ψ) if and only if s′ ϕ implies s′ ψ for every s′ ≥ s.

19

It is easy to check that the persistence property extends to arbitrary propositions.

Moreover:

• s ¬ϕ if and only if s′ 6 ϕ for all s′ ≥ s.

• s ¬¬ϕ if and only if for every s′ ≥ s, there exists s′′ ≥ s′ with s′′ ϕ.

Notation. S ϕ for ϕ a proposition if all worlds in S force ϕ.

Example 1.4.16. Consider the following Kripke models:

(1)
s′ p

s

(2)
s′ s′′ p

s

(3)
s′ p, q

s

In (1), we have s 6 ¬p, since s′ ≥ s and s′ p. We also know that s 6 p, thus s 6 p ∨ ¬p.
It is also the case that s ¬¬p, yet s 6 p, so s 6 (¬¬p→ p) either.
In (2), s 6 ¬¬p since s′ ≥ s can’t access a world that forces p. Also s 6 ¬p either, as s′′ ≥ s
forces p. So s 6 ¬¬p ∨ ¬p.
In (3), s 6 (p → q) → (¬p ∨ q). All worlds force p → q, and s 6 q. So to check the claim we
just need to verify that s 6 ¬p. But that is the case, as s′ ≥ s and s′ p.

Definition 1.4.17 (Filter). A filter F on a lattice L is a subset of L with the following
properties:

• F 6= ∅

• F is a terminal segment of L (i.e., if f ≤ x and f ∈ F , then x ∈ F)

• F is closed under finite meets

20

Example 1.4.18.

(1) Given an element j ∈ I of a set I, then the family Fj of all subsets of I containing j is a
filter on P(I). Such a filter is called a principal filter.

(2) The family of all cofinite subsets of I is a filter on P(I), the Fréchet filter.
Exercise: a maximal proper filter (known as an ultra filter) is not principal if and only if it
contains the Fréchet filter.

(3) The family of all subsets of [0, 1] with Lebesgue measure 1 is a filter.

A filter is proper if F 6= L.

A filter F on a Heyting algebra is prime if it is proper and satisfies: whenever (x ∨ y) ∈ F , we can
conclude that x ∈ F or y ∈ F .

If F is a proper filter and x /∈ F , then there is a prime filter extending F that still doesn’t contain x
(by Zorn’s Lemma).

Lemma 1.4.19. Assuming that:

• H a Heyting algebra

• v a H-valuation

Then there is a Kripke model (S,≤,) such that v |=H ϕ if and only if S ϕ, for every
proposition ϕ.

Lecture 12

Proof (sketch). Let S be the set of all prime filters of H, ordered by inclusion. We write F p if and
only if v(p) ∈ F for primitive propositions p.

We prove by induction that F ϕ if and only if v(ϕ) ∈ F for arbitrary propositions.

For the implication case, say that F (ψ → ψ′) and v(ψ → ψ′) = [v(ψ) ⇒ v(ψ′)] /∈ F . Let G′ be the
least filter containing F and v(ψ). Then

G′ = {b : (∃f ∈ F)(f ∧ v(ψ) ≤ b)}.

Note that v(ψ′) /∈ G′, or else f ∧ v(ψ) ≤ v(ψ′) for some f ∈ F , whence f ≤ v(ψ → ψ′) and so
v(ψ → ψ′) ∈ F (as F is a terminal segment).

In particular, G′ is proper. So let G be a prime filter extending G′ that does not contain v(ψ′) (exists
by Zorn’s lemma).

By the induction hypothesis, G ψ, and since F (ψ → ψ′) and G′ (this G) contains F , we have
that G ψ′. But then v(ψ′) ∈ G, contradiction.

21

This settles that F (ψ → ψ′) implies v(ψ → ψ′) ∈ F .

Conversely, say that v(ψ → ψ′) ∈ F ⊆ G ψ. By the induction hypothesis, v(ψ) ∈ G, and so
v(ψ) ⇒ v(ψ) ∈ G (as F ⊆ G). But then v(ψ′) ≥ v(ψ) ∧ (v(ψ) ⇒ v(ψ′)) ∈ G, as G is a filter.

So the induction hypothesis gives G ψ′, as needed.

The cases for the other connectives are easy (∨ needs primality). So (S,≤,) is a Kripke model. Want
to show that v |=H ϕ if and only if S ϕ, for each ϕ.

Conversely, say S ϕ, but v 6|=H ϕ. Since v(ϕ) 6= >, there must be a proper filter that does not contain
it. We can extend it to a prime filter G that does not contain it, but then G 6 ϕ, contradiction.

Theorem 1.4.20 (Completeness of the Kripke semantics). Assuming that:

• ϕ a proposition

Then Γ `IPC ϕ if and only if for all Kripke models (S,≤,), the condition S Γ implies S ϕ.

Proof. Soundness: indcution over the complexity of ϕ.

Adequacy: Say Γ 6`IPC ϕ. Then v |=H Γ but v 6|=H ϕ for some Heyting algebra H and H-valuation v
(Theorem 1.4.12). But then Lemma 1.4.19 applied to Hand v provides a Kripke model (S,≤,) such
that S Γ, but S 6 ϕ, contradicting the hypothesis on every Kripke model.

1.5 Negative translations

Definition 1.5.1 (Double-negation translation). We recursively define the ¬¬-translation ϕN
of a propositon ϕ in the following way:

• If p is a primitive proposition, then pN := ¬¬p;

• (ϕ ∧ ψ)N := ϕN ∧ ψN

• (ϕ→ ψ)N := ϕN → ψN

• (ϕ ∨ ψ)N := ¬(¬ϕN ∧ ¬ψN)

• (¬ϕ)N := ¬ϕN

Lemma 1.5.2. Assuming that:

• H a Heyting algebra

Then the map ¬¬ : H → H preserves ∧ and ⇒.

22

Proof. Example Sheet 2.

Lemma 1.5.3 (Regularisation). Assuming that:

• H a Heyting algebra

Then

(1) The subset H¬¬ := {x ∈ H : ¬¬x = x} is a Boolean algebra;

(2) For every Heyting homomorphism g : H → B into a Boolean algebra, there is a unique map
of Boolean algebras g¬¬ : H¬¬ → B such that g(x) = g¬¬(¬¬x) for all x ∈ H.

Lecture 13

Proof.

(1) Give H¬¬ := {x ∈ H : ¬¬x = x} the inherited order, so that ∧, ⇒, ⊥ and > (which are preserved
by ¬¬) remain the same. We just need to define disjunctions in H¬¬ properly.
Define a ∨¬¬ b := ¬¬(a ∨ b) in H. It is easy to show that this gives sup{a, b} in H¬¬ (as ¬¬
preserves order), so H¬¬ is a Heyting algebra.
As every element of H¬¬ is regular (i.e. ¬¬x = x), it is a Boolean algebra (see Example Sheet 2).

(2) Given a Heyting homomorphism g : H → B, where B is a Boolean algebra, define g¬¬ : H → B
as gH¬¬ . It clearly preserves ⊥,>,∧,⇒, as those operations in H¬¬ are inherited from H.
But we also have

g¬¬(a ∨¬¬ b) = g|H¬¬(¬¬(a ∨ b))
= ¬¬(g(a) ∨ g(b))
= g(a) ∨ g(b) B is Boolean
= g¬¬(a) ∨ g¬¬(b)

Thus g¬¬ is a morphism of Boolean algebras. Note that any x ∈ H provides an element ¬¬x ∈ H¬¬,
since ¬¬¬¬x = ¬¬x in H. Additionally,

g¬¬(¬¬x) = g(¬¬x)
= ¬¬g(x)
= g(x)

for all x ∈ H (as g(x) is in a Boolean algebra).
Now, if h : H¬¬ → B is a morphism of Boolean algebras with g(x) = h(¬¬x) for all x ∈ H, then
h(a) = h(¬¬a) = g(a) = g¬¬(a) for all a ∈ H. So g¬¬ is unique with this property.

In particular, if S is a set, then FHeyt(S)¬¬ ∼= FBool(S).

23

Theorem 1.5.4 (Glivenko’s Theorem). Assuming that:

• ϕ and ψ are propositions

Then `CPC ϕ→ ψ if and only if `IPC ¬¬ϕ→ ¬¬ψ.

Proof.

⇒ If `CPC ϕ → ψ, then > ≤ ϕ → ψ in FBool(L) = FHeyt(L)¬¬. As the inclusion i : FHeyt(L)¬¬ →
FHeyt(L) strictly preserves ≤ and →, it follows that

i(>) ≤ i(ϕ→ ψ)

= ϕ→ ψ

= ¬¬(ϕ→ ψ) as ϕ→ ψ ∈ FHeyt(L)¬¬

= ¬¬ϕ→ ¬¬ψ

in FHeyt(L), so `IPC ¬¬ϕ→ ¬¬ψ.

⇐ Obvious.

Corollary 1.5.5. Let ϕ be a proposition. Then `CPC ϕ if and only if `IPC ϕN .

Proof. Induction over the complexity of formulae.

Corollary 1.5.6. CPC is inconsistent if and only if IPC is inconsistent.

Proof.

⇒ If CPC is inconsistent, then there is ϕ such that `CPC ϕ and `IPC ¬ϕ. But then `IPC ¬¬ϕ and
`IPC ¬ϕ, so `IPC ⊥.

⇐ Obvious.

24

2 Computability

“If a ‘religion’ is defined to be a system of ideas that contains improvable statements, then Gödel
taught us that mathematics is not only a religion; it is the only religion that can prove itself to be on.”
– John Barrow

2.1 Recursive functions and λ-computability

Definition 2.1.1 (Partial recursive function). The class of recursive functions is the smallest
class of partial functions of the form Nk → N that contains the basic functions:

• Projections: Πmi : (n1, . . . , nm) 7→ ni;

• Successor: S+ : n 7→ n+ 1;

• Zero: z : n 7→ 0

and is closed under:

• Compositions: if g : Nk → N is partial recursive and so are h1, . . . , hk : Nm → N, then the
function f : Nm → N given by f(n) = g(h1(n), . . . , hk(n)) is partial recursive.

• Primitive recursion: Given partial recursive functions g : Nm → N and h : Nm+2 → N, the
function f : Nm+1 → N defined by{

f(0, n) := g(n)

f(k + 1, n) := h(f(k, n), k, n)

• Minimisation: Suppose g : Nm+1 → N is partial recursive. Then the function f : Nm → N
that maps n to the least n such that g(n, n) = 0 (if it exists) is partial recursive.
Notation: f(n) = µn.g(n, n) = 0.

The class of functions produced by the same conditions but excluding minimisation is called
the class of primitive recursive functions.
A partial recursive function that is defined everywhere is called a total recursive function.

Lecture 14
The terms of the untyped λ-calculus Λ are given by the grammar

Λ := V | λV.Λ | ΛΛ,

where V is a (countable) set of variables.

The notions we previously discussed (α-equality, β-reduction, η-reduction, etc) apply tit for tat.

25

Example 2.1.2. Let ω := λx.xx and Ω := ωω. Then Ω = (λx.xx)ω →β ωω = Ω. This shows
that we can have an infinite reduction chain of λ-terms.

Question: If M �β N , M �β N
′, do we have N �β M

′ and N ′ �β M
′ for some M ′?

Idea: “Simultaneously reduce” all the redexes in M to get a term M∗. This might have new redexes,
so we can iterate the process to get terms M2∗,M3∗,

M should reduce to M∗, so we have M �β M
∗ �β M

2∗, We’ll see that if M reduces to N in k
steps, then N �β M

k∗.

Using this, we will show (assuming s ≥ r):

M

N2 N1

Mr∗

Ms∗

sβ rβ

β

β

β

To get there, we want to build M∗ with two properties:

(1) M �β M
∗;

(2) If M �β N , then N �β M
∗.

Definition 2.1.3 (Takahashi Translation). The Takahashi translation M∗ of a λ-term M is
recursively defined as follows:

(1) x∗ := x, for x a variable;

(2) If M = (λx.P)Q is a redex, then M∗ := P ∗[x := Q∗];

(3) If M = PQ is a λ-application, then M∗ := P ∗Q∗;

(4) If M = λx.P is a λ-abstraction, then M∗ := λx.P ∗.

These rules are numbered by order of precendence, in case of ambiguity. We also define M0∗ :=
M and M (n+1)∗ := (Mn∗)∗.

Note that M∗ is not necessarily in β-normal form, for example if M = (λx.xy)(λy.y), then

M∗ = (xy)∗[x := (λy.y)∗] = (xy)[x := λy.y] = (λy.y)y.

26

Lemma 2.1.4. Assuming that:

• M and N are λ-terms

Then

(1) FV(M∗) ⊆ FV(M);

(2) M �β M
∗;

(3) If M →β N , then N �β M
∗.

Proof. Induction over the structure of λ-terms.

Lemma 2.1.5. Takahashi translation preserves β-contraction:

((λx.P)Q)∗ �β (P [x := Q])∗.

Proof. By definition, ((λx.P)Q)∗ = P ∗[x := Q∗]. By induction over the structure of P , we can check
that:

• If Qis not a λ-abstraction, then P ∗[x := Q∗] = (P [x := Q])∗,

• If Q = λy.Q1, then P ∗[x := (λy.Q1)
∗] �β (P [x := λy.Q1])

∗.

Lecture 15

Lemma 2.1.6. Assuming that:

• M →β N

Then M∗ �β N
∗.

Proof. Induction over the structure of M . We’ll leave the easier cases as exercises, and focus on when
M is a redex, or when M = P1P2, where P1 is not a λ-abstraction and N = Q1P2 with P1 →β Q1.

Suppose that M = (λx.P1)P2 is a redex. Then there are three possibilities for N .

(1) N = P1[x := P2]: here M∗ �β N
∗ by the previous lemma.

(2) N = (λx.Q1)P2, where P1 →β Q1: here N∗ = Q∗
1[x := P ∗

2]. By the induction hypothesis,
P ∗
1 �β Q

∗
1, so

M∗ = P ∗
1 [x := P ∗

2] �β Q
∗
1[x := P ∗

2] = N.

27

(3) N = (λx.Q1)Q2, where P2 →β Q2: is similar.

Now suppose M = P1P2, where P1 is not a λ-abstraction, and N = Q1P2 with P1 →β Q1. Here
M∗ = P ∗

1 P
∗
2 . If Q1 is not a λ-abstraction, the result is clear. So let Q1 = λy.R. Applying the

induction hypothesis to P1 →β λy.R, we get P ∗
1 �β λy.R

∗. Thus

M∗ = P ∗
1 P

∗
2 �β (λy.R∗)P ∗

2 →β R
∗[y := P ∗

2] = N∗.

Corollary 2.1.7. If M �β N , then M∗ →β N
∗.

Proof. Induction over the length of the chain M �β N , using Lemma 2.1.6.

Applying this multiple times, M �β N implies Mn∗ �β N
n∗ for all n < ω.

Theorem 2.1.8. Assuming that:

• M β-reduces to N in n steps

Then N �β M
n∗.

Proof. By induction over n. The base case is clear, as n = 0 implies M = N .

For n > 0, there is a term R with M →β R →(n−1)β N . By induction hypothesis, N �β Rn−1∗.
Since M →β R, we have R �β M

∗ by Lemma 2.1.4. Thus we get Rn−1∗ �β M
n∗ by the previous

observation. Putting it all together:

N �β R
n−1∗ �β M

n∗.

Theorem 2.1.9 (Church, Rosser, 1936). Assuming that:

• M,N1, N2 are λ-terms such that M �β N1, N2

Then there is a λ-term N such that N1, N2 �β N .

Proof. Say M →rβ N1, M →sβ N2. Without loss of generality, say r ≤ s. By Theorem 2.1.8, we have
that N1 �β M

r∗ and N2 �β M
s∗. But Mr∗ �β M

s∗ by successive applications of Lemma 2.1.4 (as
r ≤ s). So take N =Ms∗.

28

Reminder of the picture to think of:

M

N2 N1

Mr∗

Ms∗

sβ rβ

β

β

β

This has some important consequences:

• If M ≡β N , then they �β to the same term;

• If the β-normal form of a term exists, it is unique;

• We can use this to show that two terms are not β-equivalent.

Example. λx.x and λx.λy.x are different terms in β-normal form, so they can’t be β-equivalent.

Definition 2.1.10 (Church numeral). Let n be a natural number. Its corresponding Church
numeral cn is the λ-term cn := λs.λz.sn(z), where sn(z) denotes

s(s(. . . (s︸ ︷︷ ︸
n times

z) . . .).

Example 2.1.11. c0 = λs.λz.z is the ‘function’ that takes s to the identity map.
c1 = λs.λz.λs(z) is the ‘function’ that takes s to itself.
c2 = λs.λz.ss(z) takes a function s to its 2-fold composite z 7→ s(s(z)).

Definition 2.1.12 (lambda-definability). A partial function f : Nk → N is λ-definable if there
is a λ-term F such that Fcn1

. . . cnk ≡β cf(n1,...,nk).

Proposition 2.1.13 (Rosser). Define the following λ-term:
• A+ := λx.λy.λs.λz.xs(ys(z)),

• A∗ := λx.λy.λs.x(ys),

• Ae := λx.λy.yx.
Then for all n,m ∈ N:

29

• A+cncm ≡β cn+m;

• A∗cncm ≡β cnm;

• Aecncm ≡β cnm if m > 0.
Lecture 16

Proof. We’ll show that A+cncm ≡β cn+m, and leave the rest to you.

First note that
cnsz = (λf.λx.fn(x))sz ≡β (λx.sn(x))z ≡β sn(z).

So:

A+cncm = (λx.λy.λs.λz.xs(ysz))cncm

≡β (λy.λs.λz.cns(ysz))cm

≡β λs.λz.cns(cmsz))
≡β λs.λz.sn(smz)
≡β λs.λz.sn(smz)
≡β λs.λz.sm+n(z)

≡β cn+m

In a similar fashion, we can also encode binary truth-values:

Proposition 2.1.14. Define the λ-terms:

• > := λx.λy.x

• ⊥ := λx.λy.y

• (if B then P else Q := BPQ

Then for λ-terms P and Q, we have

• (if > then P else Q) ≡β P ;

• (if ⊥ then P else Q) ≡β Q.

Proof. Just compute it!

With this, we can encode logical connectives via:

• ¬p := if p then ⊥ else >;

30

• ∧p1p2 := if p1 then (if p2 then > else ⊥) else ⊥;

• ∨p1p2 := if p1 then > else (if p2 then > else ⊥).

We can also encode pairs: if we define [P,Q] := λx.xPQ, then [P,Q]> ≡β P and [P,Q]⊥ ≡β Q.
However, it is not true that [M>,M⊥] ≡β M !

Recursively defining terms within the λ-calculus requires a clever idea: we see such a term as a solution
to a fixed point equation F = λx.M where F occurs somewhere in M .

Theorem 2.1.15 (Fixed Point Theorem). There is a λ-term Y such that, for all F :

F (Y F) ≡β Y F.

Proof. Define
Y = λf.(λx.f(xx))λx.f(xx).

If we compute Y F , we get:

Y F = (λf.(λx.f(xx))λx.f(xx))F

≡β (λx.F (xx))λx.F (xx)

≡β F ((λx.F (xx))(λx.F (xx)))
≡β F ((λf.(λx.f(xx))λx.f(xx))F)
≡β F (Y F)

We call any combinator (i.e. a λ-term without free variables) Y satisfying the property F (Y F) ≡β Y F
for all terms F a fixed-point combinator.

Corollary 2.1.16. Given a λ-term M , there is a λ-term F such that F ≡β M [f := F].

Proof. Take F = Y λf.M . Then

F ≡β (λf.M)Y (λf.M) ≡β (λf.M)F ≡β M [f := F].

Example 2.1.17. Suppose D is a λ-term ecoding a predicate, i.e. Pcn ≡β ⊥ or > for every
n ∈ N. Let’s write down a λ-termthat encodes a program that takes a number and computes
the next number satisfying the predicate.
First consider

M := λf.λx.(if (Px) then x else f(Sx)),

where S encodes the successor map. Our goal is to have M run on itself. This can be done by

31

using the term F := YM . Indeed:

Fcn ≡β (if Pcn then cn else Fcn+1)

for every n ∈ N.

Notation. λxsz.f will be short hand for λx.λs.λz.f (and the obvious generalisation to any
number of variables, labelled in any way).

Lemma 2.1.18. The basic partial recursive functions are λ-definable.

Proof. The i-th projection Nk → N is definable by πki : λx1 . . . λxk.xi.

Successor is implemented by S := λx.λs.λz.s(xsz).

The zero map is given by Z := λx.c0.

Just compute!

Lecture 17

Lemma 2.1.19. The class of λ-definable functions is closed under composition.

Proof. SayG is a λ-term defining g : Nk → N, and that λ-termsH1, . . . , Hk define h1, . . . , hk : Nm → N.
Then the composite map f : n 7→ g(h1(n), . . . , hk(n)) is definable by the term

F := λx1 . . . xm : (G(H1x1 . . . xm) . . . (Hkx1 . . . xm))

by inspection.

Lemma 2.1.20. The class of λ-definable functions is closed under primitive recursion.

Proof. Suppose f : Nm+1 → N is obtained from h : Nm+2 → N and g : Nm → N by primitive recursion.

f(0, n) := g(n)

f(k + 1, n) := h(f(k, n), k, n)

and the λ-terms H and G define h and h respectively.

We need a λ-term to keep track of a pair that records the current state of computation: the value of
k and the value of f at that stage.

32

So define
T := λp.[S(pπ1),H(pπ2)(pπ1)x1 . . . xn],

which acts on a pair [ck, cf(k,n] by updating the iteration data. Then f ought to be definable by

F := λx.λx1 . . . xm.xT [c0, Gx1 . . . xm]π2.

Indeed,

Fckcn1
. . . cnm ≡β ckT [c0, Gcn1

. . . cnm]π2

≡β T k[c0, cg(π)]π2

by definition of ck, and since

T [ck, cf(k,π)] ≡β [Sck,Hcf(k,n)ckcn1 , . . . , cnm]

≡β [ck+1, ch(f(k,n),k,n)]

we have
Fckcn1

. . . cnm ≡β T k([c0, Gcn1
. . . cnm])π2 ≡β cf(k,n)

as needed.

Lemma 2.1.21. The λ-definablefunctions are closed under minimisation.

Proof. Suppose G λ-defines g : Nm+1 → N, and that f : Nm → N is defined from g by minimisation:
f(n) = µk.g(k, n) = 0.

We can λ-define f by implementing an algorithm that searches for the least k in the following way:

First define a term that can check if a Church numeral is c0, for example

zero? := λx.x(λy.⊥)>.

You can check that

zero? cn ≡β

{
> if n = 0

⊥ otherwise
.

Now we want a term that, on input k, checks if g(k, n) = 0 and returns k if so, else runs itself on k+1.
If we can do this, running it on input k = 0 will perform the search.

Let:

Search := λf.λg.λk.λx1 . . . λxm.(if zero?(gkx1 . . . xm) then k else (f(g(Sk)x1 . . . xm))),

and set
F := λx1 . . . λxm.(Y Search)Gc0x1 . . . xm.

Note that
(Y Search)Gckcn1 . . . cnm ≡β Search(Y Search)Gckcn1 . . . cnm ,

33

which is
if zero?(Gckcn1 . . . cnm) then ck else ((Y Search)Gck+1cn1 . . . cnm .

Thus
(Y Search)Gckcn1 . . . cnm ≡β ck

if g(k, n) = 0 and
(Y Search)Gckcn1 . . . cnm ≡β (Y Search)Gck+1c1 . . . cm

otherwise, as g is λ-defined by G. Hence

Fcn1
. . . cnm ≡β (Y Search)Gc0cn1

. . . cnm ≡β cf(n)

if f is defined on n. So F λ-defines f .

Theorem 2.1.22. Every partial recursive function is λ-definable.
Lecture 18

Definition 2.1.23 (Gödel numbering). Let L be a first-order language. A Gödel numbering
is an injection L ↪→ N that is:

(1) Computable (assuming some notion of computability for strings of symbols over a finite
alphabet);

(2) Its image is a recursive subset of N;

(3) Its inverse (where defined) is also computable.

Notation. We will use dϕe to be the Gödel numbering of an element of L, for some fixed choice
of Gödel numbering.

One way: assign a unique nuber ns to each symbol s in your finite alphabet σ. We can then define

ds0 . . . ske :=
k∑
i=0

(nsi + 1).

Remark. We can also encode proofs: add a symbol # to the alphabet and code a proof with
lines ϕ0, . . . , ϕk as dϕ0#ϕ1# · · ·#ϕke.

Theorem 2.1.24. Assuming that:

• f is λ-definable

Then f is partial recursive.

34

Proof (sketch). Assign Gödel numbers dτe to λ-terms τ . We can then consider a partial recursive
function in N(t) that on input t checks if t is the Gödel numbering of a λ-term τ , and returns the
Gödel numbering of its β-normal form if it exists (undefined otherwise).

We also have partial recursive functions that convert n to dcne and vice-versa. Finally, say f is a
partial function defined by a λ-term F . We can compute f(m) by first converting Church numerals to
their Gödel numbers, then append the result to dF e in order to get dFcn1

. . . cnke, then apply N .

If f is defined on n, then Fcn1
. . . cnk has a β-normal form, and what we get is

⌈
cf(n)

⌉
. Otherwise

N(dFcn1
. . . cnke) is not defined.

We finish by going back from
⌈
cf(n)

⌉
to f(n).

2.2 Decidability in Logic

Recall that a subset X ⊆ N is recursive (or decidable) if its characteristic map is total recursive.

Definition 2.2.1 (Recursively enumerable). We say that X ⊆ N is recursively enumerable if
any of the following are true:

(1) X is the image of some partial recursive f : N → N;

(2) X is the image of some total recursive f : N → N;

(3) X = dom f , for f a partial recursive f : N → N.

Note, if X and N\X are both recursively enumerable, then X is recursive. Note that the set of partial
recursive function is countable, so we can fix an enumeration {f0, f1, . . .}.

Example 2.2.2. The subset W = {(i, x) : fi is defined on x} ⊆ N2 is recursively enumerable,
but not recursive.

Definition 2.2.3 (Recursive / decidable language). A language L is recursive if there is an
algorithm that decides whether a string of symbols is an L-formula.
An L-theory T is recursive if membership in T is decidable (for L-sentences).
An L-theory T if there is an algorithm for deciding whether T |= ϕ.

We will work with recursive from now on.

Theorem 2.2.4 (Craig). Assuming that:

• T is a first order theory with a recursively enumerable set of axioms

Then T admits a recursive axiomatisation.

35

Proof. By hypothesis, there is a total recursive f such that the axioms of T are exactly {f(n) : n ∈ N}.

Idea: Replace f(n) with something equivalent, but with a shape that lets us retrieve n. Let

ψn =

n∧
k=1

(f(n))

for each n and
T ∗ := {ψn : n ∈ N}.

Then T ∗ has the same deductive closure as T . As formulae have finite length, we can check in finite
time whether some χ is f(0) or some

∧n
k=1An. By appropriate use of brackets, we can make sure that

such an n is “unique” if we are working with some ψn.Lecture 19

In the first case, we halt and say we have a member of T ∗. In the second cas, we check if A = f(n),
saying we have a member of T ∗ if so, and that we don’t otherwise.

We can do this because we can scan the list {f(n) : n < ω} and check symbol by symbol whether f(n)
matches A, which takes finite time.

If the input is not of the right shape, we halt and decide that it is /∈ T ∗.

Lemma 2.2.5. The set of (Gödel numberings for) total recursive functions is not recursively
enumerable.

Proof. Suppose otherwise, so there is a total recursive function whose image is the set of Gödel num-
berings of total recursive functions.

So for any total recursive r, there is n such that df(n)e = r. Define g : N → N by g(n) = df(n)e (n)+1.
This is certainly total recursive, but can’t be the function coded by f(m) for any m, contradiction.

Definition 2.2.6 (Language of arithmetic). The language of arithmetic is the first-order lan-
guage LPA with signature (0, 1,+, ·, <). The base theory of arithmetic is the LPA-theory P−

whose axioms express that:

(1) + and · are commutative and associative, with identity elements 0 and 1 respectively;

(2) · distributes over +;

(3) < is a linear ordering compatible with + and ·;

(4) ∀x.∀y.(x < y → ∃z.x+ z = y);

(5) 0 < 1 ∧ ∀x.(x > 0 → x ≥ 1);

(6) ∀x.x ≥ 0.

36

The (first-order) theory of Peano arithmetic PA is obtained from PA by adding the scheme of
induction: for each LPA-formula ϕ(x, y), the axiom

Iϕ := ∀y.(ϕ(0, y) ∧ ∀x.(ϕ(x, y) → ϕ(x+ 1, y)) → ∀x.ϕ(x, y).

Definition 2.2.7 (Delta0-formula, Sigma1-formula). A ∆0-formula of PA is one whose quan-
tifiers are bounded, i.e. ∃x < t.ϕ(x) or ∀x < t.ϕ(x), where t is not free in ϕ and ϕ is quantifier
free.
We say ϕ(x) is a Σ1-formula if there is a ∆0-formula ψ(x, y) such that

PA ` ϕ(x) ↔ ∃y.ψ(x, y).

It is a Π1-forumla if there is a ∆0-formula ψ(x, y) such that

PA ` ϕ(x) ⇐⇒ ∀y.ψ(x, y).

In Example Sheet 4, you will prove that the characteristic function of a ∆0-definable set is partial
recursive. We will show that the Σ1-definable sets are precisely the recursively enumerable ones.

Recall that defining 〈x, y〉 = (x+y)(x+y+1)
2 + y yields a total recursive bijection N2 → N.

Applying this a bunch of times, we get total recursive bijections Nk → N by 〈v, w〉 = 〈v, 〈w〉〉.

This is not good, as we have a different function for each k. We’d like a “pairing function” that lets
us see a number as a code for a sequence of any length.

This can be done within any model of PA by using a single function β(x, y) (known as Gödel’s β-
function) which is definable in PA.

We want an arithmetic procedure that can associate a code to sequences of any length, and such that
the entries of the sequence can be recovered from the code.

We will do this by a clever application of the Chinese Remainder Theorem.Lecture 20

Suppose given a sequence x0, x1, . . . , xn−1 of natural numbers. We want numbers m + 1, 2m +
1, . . . , nm+1 to serve as moduli, with xi < (i+1)m+1, and all of which are pairwise coprime. If we can
find m such that these conditions hold, then there is a number a such that a ≡ xi (mod (i+1)m+1).

Taking m = max(n, x0, . . . , xm−1)! works.

We say that the pair (a,m) codes the sequence.

Definition 2.2.8 (beta indexing). The function β : N2 → N is defined by β(x, i) = a%(m(i+
1) + 1), where a and m are the unique numbers such that x = 〈a,m〉.

37

Remark. The forumula β(x, y) = z is given in PA by a ∆0-formula. We will use the notation
(x)i for β(x, i); thus the decoding property is that (x)i = xi if x = 〈a,m〉 codes x0, . . . , xn−1.

Lemma 2.2.9 (Gödel’s Lemma). Assuming that:

• M |= PA

• n ∈ N

• x0, . . . , xn−1 ∈ M

Then there is u ∈M such that M |= (u)i = xi for all i < n.

Theorem 2.2.10. Assuming that:

• f : Nk → N a partial function

Then f is recursive if and only if there is a Σ1-formula θ(x, y) such that y = f(x) ⇐⇒ N |=
θ(x, y).

Proof. ⇐ Suppose that y = f(x) is Σ1-definable by θ(x, y) := ∃z.ϕ(x, y, z) (so ϕ ∈ ∆0).
The function first(x) = (µy ≤ x).∃z ≤ x.(x = 〈y, z〉) is primitive recursive. By minimisation, the
function

g(x) = µz.(∃v, w ≤ z.(z = 〈v, w〉 ∧ ϕ(x, v, w)))

is partial recursive.
Since 〈v, w〉 = 〈v, 〈w〉〉 for tuples w, we have that first(〈v, w〉) = v. Thus

first(g(x)) =

{
The least y such that N |= θ(x, y) if there is such y
undefined otherwise

as for each x ∈ N there is at most one y such that N |= θ(x, y). Now N |= θ(x, y) ⇐⇒ y = f(x),
so f(x) = first(g(x)) whenever defined. So f is partial recursive.

⇒ We will show that the class of all functions with Σ1-graphs contains the basic functions and is
closed under composition, primitive recursion, and minimisation.
The graphs of zero, successor, and i-th projection are the formulae y = 0, y = x + 1, and y = xi
respectively, so are Σ1-definable.
If f(x1, . . . , xk) and g1(z), . . . , gk(z) all have Σ1-graphs, then the graph of the composite is given
by:

∃u1, . . . , uk.
n∧
i=1

(ui = gi(z) ∧ y = f(u1, . . . , uk)).

38

This is equal to a Σ1-formula, as those are closed under ∧,∃. If f(x, y) is obtained by primitive
recursion {

f(x, 0) = g(x)

f(x, y + 1) = h(x, y, f(x, y))

where g and h have Σ1-graphs, then we can use Gödel’s Lemma to show that the graph of f is
given by

∃u, v.(v = g(x) ∧ (u)0 = v ∧ (u)y = z ∧ ∀i < y.∃r, s.[r = (u)i ∧ s = (u)i+1 ∧ s = h(x, i, r)].

We do this by coding the sequence f(x, 0), f(x, 1), . . . , f(x, y) by u. This formula is equal to a
Σ1-formul since:

(1) z = (x)y is ∆0;
(2) If the graph of h is defined by ∃t.ψ(x, i, r, s, t) with ψ ∈ ∆0, then

∀i < y.∃r, s[r = (u)i ∧ s = (u)i+1 ∧ s = h(x, i, r)]

is equal to
∃w.∀i < y.∃r, s, t ≤ w(r = (u)i ∧ s = (u)i+1 ∧ ψ(x, i, r, s, t))

as we can take w to be the maximum between suitable r, s, t with r = (u)i, s = (u)i+1,
ψ(x, i, r, s, t) with i = 0, 1, . . . , y − 1.
A similar argument gives closure under minimisation.

Lecture 21 If f(x) is µy.g(x, y) = 0 and the graph of g is definable by a Σ1-formula, then the graph of f is
definable by

∃u.((u)y = 0 ∧ ∀i < y.((u)i 6= 0 ∧ ∀j ≤ y.∃v(v = g(x, j) ∧ v = (u)j)︸ ︷︷ ︸
(∗)

))

by using Gödel’s Lemma to code g(x, 0), g(x, 1), . . . , g(x, f(x)).
Again, this is equal to a Σ1-formula if the graph of g is given by ∃wϕ(x, y, z, w) with ϕ ∈ ∆0, then
(∗) is equal in N to

∃s.∀j ≤ y.∃v, w ≤ s.(v = (u)j ∧ ϕ(x, j, v, w)).

Corollary 2.2.11. if and only if A subset A ⊆ Nk is recursively enumerable if and only if there
is a Σ1-formula ψ(x1, . . . , xk) such that, given x ∈ Nk, we have x ∈ A if and only if N |= ψ(x).

Proof.

⇒ If A is recursively enumerable, then there is a recursive f such that A = dom(f). Given x ∈ Nk,
we thus have x ∈ A if and only if N |= ∃v.v = f(x). But ∃v.v = f(x) is equal to a Σ1-formula by
Theorem 2.2.10.

39

⇐ Conversely, if A is defined in N by a Σ1-formula ψ, define f(x) = 0 if N |= ψ(x), and f(x) ↑
otherwise. The graph of f is given by y = 0 ∧ ψ(x), which is Σ1, and so f is recursive by
Theorem 2.2.10. But A = dom(f), so A is recursively enumerable.

Any model of PA− includes a copy of N inside of it: consider the standard natural numbers

n = SSS . . . S︸ ︷︷ ︸
n

0.

In fact, N embeds in any model PA− as an initial segment: essentially because

PA− ` ∀x.(x ≤ k → x = 0 ∧ x = 1 ∧ · · · ∧ x = k).

In Example Sheet 4, you will see that N is a ∆0-elementary substructure of any model of PA−: every
∆0-sentence ϕ(n) true in N is also true in the model.

Definition 2.2.12 (Representation of a total function). Let f : Nk → N be total and T be
any LPA-theory extending PA−. We say that f is represented in T if there is an LPA− formula
θ(x1, . . . , xk, y) such that, for all n ∈ Nk:

(a) T ` ∃!y.θ(n, y)

(b) If k = f(n), then T ` θ(n, k)

Lemma 2.2.13. Every total recursive function f : Nk → N is Σ1-represented in PA−.

Proof. The graph of f is given by a Σ1-formula by Theorem 2.2.10, say ∃z.ϕ(x, y, z) where ϕ ∈ ∆0.
Without loss of generality, we may assume that z is a single variable (for example, rewrite ∃z.∃w <
z.ϕ(x, y, w)).

Let ψ(x, y, z) be the ∆0-formula

ϕ(x, y, z) ∧ ∀u, v ≤ y + z.(u+ v < y + z → ¬ϕ(x, u, v)).

Then the Σ1-formula θ(x, y) := ∃z.ψ(x, y, z) represents f in PA−.

We show PA− ` θ(n, k) first, where k = f(n). Note that k is the unique element of N such that
N |= ∃z.ϕ(n, k, z), as f is a function.

Take l to be the first natural number such that N |= ϕ(n, k, l). Then N |= ψ(n, k, l) too, whence
N |= ∃z.ψ(n, k, z). But any Σ1-sentence true in N is true in any model of PA−(c.f. Example Sheet 4),
so PA− ` ∃z.ψ(n, k, z), i.e. PA− ` θ(n, k).

To see that PA− ` ∃!y.θ(n, y), let l be the first number such taht N |= ϕ(n, k, l), where k = f(n).
Suppose a, b ∈ M |= PA−, with M |= ψ(n, a, b). We will show that a = k. Completeness settles the
claim. Again, ϕ(n, k, l) is a ∆0-sentence true in N, thus true in M.

40

Using the fact that < is a linear ordering in M, we have a, b ≤ k+ l ∈ N, so a, b ∈ N (as N is an initial
segment of M). Now M |= ψ(n, a, b) ∈ ∆0, hence N |= ψ(x, a, b) and thus N |= ∃z.ϕ(n, a, z). Thus
a = k as needed.

Corollary 2.2.14. Every recursive set A ⊆ Nk is Σ1-representable in PA−.

Proof. The characteristic function χA of A is total recursive, so χA(x) = y is represented by some
Σ1-formula θ(x, y) in PA−. But then θ(x, 1) represents A in PA−.

Lecture 22

Lemma 2.2.15 (Diagonalisation Lemma). Assuming that:

• T an LPA-theory

• in T , every total recursive function is Σ1-represented

• θ(x) an LPA-formula with one free variable x

Then there is an LPA-sentence G such that

T ` G↔ θ(dGe).

Moreover, if θ is a Π1-formula, then we can take G to be a Π1-sentence.

Proof. Define a total recursive function diag this way: on input n ∈ N, check if n = dσ(x)e is the
Gödel numbering of some LPA-formula σ(x). If so, return d∀y.(y = n→ σ(y))e, else return 0.

As diag is total recursive, it is Σ1-represented in T by some δ(x, y). Consider the formula

ψ(x) := ∀z.(δ(x, z) → θ(z)).

Let n = dψ(x)e and G := ∀y.(y = n → ψ(y)). This makes G the sentence whose Gödel numbering is
diag(dψ(x)e). It is obvious that T ` G↔ ψ(n), so we know that

T ` G↔ ∀z.(δ(n, z) → θ(z)). (α)

Now δ(x, y) represents diag in T , and diag(n) = dGe by construction, hence

T ` ∀z.(δ(n, z) ↔ z = dGe). (β)

Combining (α) and (β), we get T ` G↔ θ(dGe) as needed.

Finally, note that if θ ∈ Π1, then both ψ and G are equal to a Π1-formula.

41

Theorem 2.2.16 (Crude Incompleteness). Assuming that:

• T be a recursive set of (Gödel numberings of) LPA-sentences

• T is consistent (never includes both ϕ and ¬ϕ)

• T contains all the Σ1 and Π1 sentences provable in PA−

Then there is a Π1-sentence τ such that τ /∈ T and ¬τ /∈ T .

Proof. Let θ(x) be a Σ1-formula that represents T in PA−, so that

x ∈ T ⇐⇒ PA− ` θ(x) and x /∈ T ⇐⇒ PA− ` ¬θ(x).

This exists since T is recursive. By the Diagonalisation Lemma, there is a Π1-sentence τ such that
PA− ` τ ↔ ¬θ(dτe).

If dτe ∈ T , then PA− ` θ(dτe), and thus PA− ` ¬τ . But then d¬τe ∈ T (as ¬τ ∈ Σ1 and PA− proves
it).

If d¬τe ∈ T , then τ /∈ T , so PA− ` ¬θ(dτe), and thus PA− ` τ . As τ ∈ Π1 and PA− ` τ , we have
dτe ∈ T .

Since T is consistent, we can’t have either of dτe or d¬τe in T .

Corollary 2.2.17 (Gödel-Rosser Theorem). Let T be a consistent LPA-theory extending PA−

and admitting a recursively enumerable axiomatisation. Then T is Π1-incomplete: there is a
Π1-sentence τ such that T 6` τ and T 6` ¬τ .

Proof. By Craig’s Theorem, we may assume that T is recursive. Suppose that T is Π1-complete, and
consider the set S of (Gödel numberings of) all the Σ1 and Π1 sentences in LPA that T proves.

The set S is recursive: we can effectively decide if a given sentence is Σ1 or Π1, then check if dσe ∈ S
by systematically searching through all proofs using the axioms in T , until we either find a proof of σ
or a proof of ¬σ. Since T is Π1-complete, there is always such a proof, and we’ll find it in finite time.

But then S satisfies the hypotheses of Theorem 2.2.16, so there is a Π1-sentence τ with dτe /∈ S and
d¬τe /∈ S, contradicting Π1-completeness of T .

Definition 2.2.18 (Recursive structure). A (countable) LPA-structure M is recursive if there
are total recursive functions ⊕ : N2 → N, ⊗ : N2 → N, a binary recursive relation 4⊆ N2, and
natural numbers n0, n1 ∈ N such that M ∼= (N,⊕,⊗,4, n0, n1) as LPA-structures.

We will show that the usual N is the only recursive model of PA (up to ∼=).Lecture 23

42

Strategy:

(1) Given a countable model M of PA, we note that we encode subsets of N as elements of M;

(2) If M is non-standard, then there is an element that codes a non-recursive set;

(3) If M also has recursive ⊕, then there is a membership decision procedure for any subset that it
codes.

Note that there is a Σ1-formula pr(x, y) that captures y being the x-th prime, and PA ` ∀x.∃!y. pr(x, y).
So if N thinks that k is the n-th prime, then any model of PA thinks so too. Write πn for the n-th
prime.

Lemma 2.2.19 (Overspill). Assuming that:

• M a non-standard model of PA

• ϕ(x) an LPA-formula

• M |= ϕ(n) for all standard natural numbers n

Then there is a nonstandard natural number e such that M |= ϕ(e).

Proof. Say M |= ϕ(n) for all standard n, but only them. Then M |= ϕ(0) and M |= ∀n.(ϕ(n) →
ϕ(n+ 1)) holds (if ϕ(n) holds, then n and hence n+ 1 are standard).

By Iϕ (induction), we conclude that M |= ∀n.ϕ(n). But M is non-standard, so there is non-standard
e ∈ M with ϕ(e), contradiction.

Fix some m ∈ N, and a property ϕ(x) of the natural numbers.

• There is a number c such that ∀k < m.(ϕ(k) ↔ πk | c), namely the product of all primes πk with
k < m and ϕ(k).

• We perceive c as a code for the numbers with the property ϕ below m, which we can decode by
prime factorisation.

Definition 2.2.20 (Canonically coded). A subset S ⊆ N is canonically coded in a model M of
PA if there is c ∈ M such that

S = {n ∈ N : ∃y.(πn × y = c)}

where n denotes the standard number n in the model.

43

We could use other formulas to code subsets. Th subsets of N coded in M are those S ⊆ N for which
there is a PA-formula ϕ(x, y) and c ∈ M such that S = {n ∈ N : M |= ϕ(n, c)}.

As it turns out, coding via Σ1-formulae gives nothing new:

Proposition 2.2.21. Assuming that:

• C(u, x) be a ∆0-formula

• M a non-standard model of PA

Then given any b̃ ∈ M, there is c ∈ M such that, for any n ∈ N:

M |= ∃k < b̃.C(k, n) ↔ ∃y.(πn × y) = c.

Proof (sketch*). The following formula holds in N for any n:

∀b.∃a.∀u < n.(∃k < b.C(k, u) ↔ ∃y.(πu × y) = a).

This is by the reasoning we gave when introducing codes, which works due to the bound on k and u.
This can be proved in PA*.

Thus
M |= ∀b.∃a.∀u < n.(∃k < b.C(k, u) ↔ ∃y.(πu × y = a))

for any n ∈ N. So by Lemma 2.2.19 there is a non-standard w ∈ M such that

M |= ∀b.∀a.∀u < w.(∃k < b.C(k, u) ↔ ∃y.(πu × y = a)).

So for any b̃ ∈ M, there must be c ∈ M such that

M |= ∀u < w.(∃k < b̃.C(k, u) ↔ ∃y.(πu × y = c)).

Now w is non-standard, so M |= n < w for all n ∈ N. So for any b̃ ∈M there is c ∈ M with

M |= ∃k < b̃.C(k, n) ↔ ∃y.(πn × y = c)

for all n ∈ N.

Definition 2.2.22 (Recursively inseparable). We say that subsets A,B ⊂ N are recursively
inseparable if they are disjoint and there is no recursive C ⊆ N with B ∩ C = ∅ and A ⊆ C.

Proposition 2.2.23. There are recursively enumerable subsets A,B ⊆ N that are recursively
inseparable.

44

Proof. Fix an effective enumeration {ϕn : n < ω} of the partial recursive functions. Define A = {n ∈
N : ϕn(n) = 0} and B = {n ∈ N : ϕn(n) = 1}, which are clearly disjoint and are clearly recursively
enumerable.

Suppose there is a recursive C with A ⊆ C and B ∩ C = ∅, and write χC for its (total recursive)
characteristic function. There must be u ∈ N such that χC = ϕu, as χC is total recursive.

Since χC(u) ↓ and is either 0 or 1, we have either u ∈ A or u ∈ B.

If u ∈ A, then χC(u) = ϕu(u) = 0, so u /∈ C, contradicting A ⊆ C; so u ∈ B. But then χC(u) =
ϕu(u) = 1, so u ∈ C, contradicting B ∩ C = ∅. Thus A and B are recursively inseparable.

Lecture 24

Lemma 2.2.24. Assuming that:

• M |= PA non-standard

Then there is a non-recursive set S which is canonically coded in M.

Proof. Say A,B ⊆ N are recursively enumerable and recursively inseparable. By Corollary 2.2.11, there
are Σ1-formulae ∃u.a(u, x) and ∃u.b(u, x) defining A and B respectively (so a and b are ∆0-formulae).

Fix n ∈ N. As the sets are disjoint, we have:

N |= ∀v < n.∀w < n.∀x < n.¬(a(v, x) ∧ b(w, x)).

As this sentence is ∆0, it follows, for any non-standard M |= PA and n ∈ M that:

M |= ∀v < n.∀w < n.∀x < n.¬(a(v, x) ∧ b(w, x)).

By Overspill, there is some non-standard c ∈ M such that

M |= ∀v < c.∀w < c.∀x < x.¬(a(v, x) ∧ b(w, x)). (∗)

Now define X := {n ∈ N : ∃v < c.a(v, n)}. Note that:

• A ⊆ X: let n ∈ A, so that N |= a(m,n) for some m ∈ N (a A is defined by ∃u.a(u, x)). Then
M |= a(m,n), as a is ∆0. Hence M |= ∃v < c.a(v, n) as any standard m is below c as it is
non-standard. But then n ∈ X.

• B ∩ X = ∅: if n ∈ B, then N |= b(m,n) for some m, so arguing as before we get M |= ∃w <
c.b(w, n). By (∗), we can deduce M |= ¬∃v < c.a(v, n). So n /∈ X.

As A and B are recursively inseparable, X can’t be recursive. This shows that M must encode
a non-recursive set, which implies that it must canonically encode a non-recursive set by Proposi-
tion 2.2.21.

45

Theorem 2.2.25 (Tennenbaum). Assuming that:

• M = (M,⊕,⊗,4, n0, n1) a countable non-standard model of PA

Then ⊕ is not recursive.

Proof. As M is countable, we may as well assume that M = N, n0 = 0, n1 = 1.

By Lemma 2.2.24, there is some c ∈ M that canonically codes a non-recursive subset X = {n : M |=
∃y.(πn × y = c)} ⊆ N.

As PA proves that
πn × x = x+ · · ·+ x︸ ︷︷ ︸

πn times

,

we have that
πn × y = y + · · ·+ y︸ ︷︷ ︸

πn times

for all y ∈M . So n ∈ X if and only if there is d ∈M such that

c = d⊕ · · · ⊕ d︸ ︷︷ ︸
πn times

.

Suppose ⊕ is recursive. Then we can can through N (which is M) and look for some d ∈ M that
realises the disjunction of:

c = x⊕ · · · ⊕ x︸ ︷︷ ︸
πn x’s

c = x⊕ · · · ⊕ x︸ ︷︷ ︸
πn x’s

⊕1

· · · c = x⊕ · · · ⊕ x︸ ︷︷ ︸
πn x’s

⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
πn − 1 ones

As ⊕ is recursive, we can decide whether the disjunction holds of a given d. Moreover, the spearch for
such d always terminates:

• Euclidean division is provable in PA: for any u, v ∈ M with v 6= 0, there are unique q, r ∈ M
such that r 4 v and u = (v ⊗ q)⊕ r.

•
PA ` ∀x.(x < π1 ↔ (x = 0 ∧ x = 1 ∧ · · · ∧ x = (1 + · · ·+ 1));

Combining these, we get that division of c by πn in M leaves a unique quotient d ∈M , and remainder
r 4 πn, which is either 0 or 1 or 1⊕ 1 or …or 1⊕ 1⊕ · · · ⊕ 1 (πn− 1 times); i.e. one of the disjunctions
from before.

46

Now we see that X is recursive: if our search provides d such that

M |= c = d⊕ · · · ⊕ d︸ ︷︷ ︸
πn times

,

then n ∈ X, and if the search gives d satisfying one of the other disjunctions, then n /∈ X.

This contradicts the choice of X, so ⊕ can’t be recursive.

47

�

Index

F 18, 19, 23, 24

Gödel numbering 34, 35, 36, 41, 42

Gn 34, 35, 36, 41, 42

PA 36, 37

α-equivalent 5

Boolean algebra 13, 14, 15, 23

β-contraction 6

bounded 13, 14, 15, 18

β-normal form 7, 8, 9, 10, 26, 29, 34, 35

β-redex 6, 8

β-reduction 6, 7, 10

base theory of arithmetic 36

canonically coded 43, 45, 46

Church numeral 29, 33, 35

cn 29, 30, 31, 32, 33, 34, 35

complemented 13

composition 25, 32, 38

context 5, 6, 10

ctopbot 30, 31

decide 35, 43

decidable 35

decidable 35

48

delz 37, 38, 39, 40, 41, 42, 43, 45

distributive 13, 14, 15, 16, 17, 18

filter 20, 21, 22

force 19, 20

forcing 19

forcing 19, 20, 21, 22

fixed-point combinator 31, 33, 34

h 9, 10

Heyting algebra 15, 16, 18, 19, 21, 22, 23

height 8, 9, 10

Heyting homomorphism 15, 23

himplies 15, 16, 18, 19, 21, 22, 23

hmodels 16, 21, 22

H-valid 15, 18

H-valuation 15, 21, 22

ifelse 30, 31, 33

IPC 3, 10, 11, 15, 16, 17, 18, 19, 22, 23, 24

Kripke model 19, 20, 21, 22

λ-abstraction 5, 8, 26, 27

λ-application 5, 26

lattice 13, 14, 15, 16, 17, 18, 20

λ-definable 29, 32, 33, 34

λ-define 29, 33, 34

lpa 37, 38, 39, 40, 41, 42, 43, 44, 45, 46

Lindenbaum-Tarski algebra 17, 18

49

λ-term 5, 6, 7, 11

lterms 5, 6, 8

lto 10

minimisation 25, 33, 38, 39

pair 32, 33

persistence 19

partial recursive 25, 34, 35, 37, 38

partial recursive function 25, 32, 34, 35, 44

prime 21, 22

primitive recursion 25, 32, 38

primitive recursive 25, 38

principal 20

projection 25

proper 20, 21, 22

principal up-set 19

pups 19

range 10, 11

recursive 35, 39, 41, 42, 43, 44, 45, 46, 47

recursive 35

recursive 42

reduces 6, 7, 9, 28

redex 6, 9, 10, 26, 27

reduction 6, 8, 9

recursively enumerable 35, 36, 37, 39, 42, 44, 45

represent 40, 41, 42

50

represented 40, 41

representable 40, 41

representation 40

recursively inseparable 44, 45

state 19

simply typed λ-term 5, 7, 10

stype 5, 6, 8, 10, 12

subst 6, 27, 28

successor 25, 32

succ 32, 33

term 5, 7, 8

tob 6, 7, 8, 10, 12, 13, 25, 26, 27, 28, 29, 30, 31, 33, 34

tobev 7, 26, 27, 28, 29

toe 13

total recursive 25, 35, 36, 37, 41, 42, 44

typability relation 5

trel 6, 7, 8, 9, 10, 11, 12, 13

terminal segment 19, 20

tsegs 19

tstar 26, 27, 28

Takahashi translation 26, 27

type 5, 6, 8

λ-term 25, 26, 27, 28, 29, 30, 31, 32, 34, 35

term 25, 28, 29, 31, 32, 33

valuation 15, 16, 18, 19

51

wforces 21

world 19, 20

zero 25

52

	Non-classical Logic
	Intuitionistic Logic
	The simply typed λ-calculus
	The Curry-Howard Correspondence
	Semantics for IPC
	Negative translations

	Computability
	Recursive functions and λ-computability
	Decidability in Logic

	Index

