%! TEX root = DA.tex % vim: tw=50 % 04/12/2024 12PM \begin{theorem*} $\alpha$ algebraic of degree $d \le 3$. Then there exists $C = C(\alpha) > 0$, $\eps = \eps(\alpha) > 0$ such that for all $\frac{p}{q} \in \Qbb$: \[ \left| \alpha - \frac{p}{q} \right| > q^{-(d - \eps)} .\] \end{theorem*} \begin{proof} Fix some $\alpha$ and $\eps > 0$ small enough. Suppose that \[ \left| \alpha - \frac{p}{q} \right| < q^{-(d - \eps)} \] for some $\frac{p}{q} \in \Qbb$. We aim to show that $q < C = C(\alpha)$. We assume as we may that $\alpha$ is an algebraic integer. Let \[ P(X) = (X - \alpha_1) \cdots (X - \alpha_d) \] be the minimal polynomial of $\alpha = \alpha_1$. Then: \[ (p - \alpha_1 q) \cdots (p - \alpha_d q) = Q < Cq^\eps .\] With $Q \in \Zbb$. Then \[ N_{\Qbb(\alpha_j) / \Qbb} (p - \alpha_j q) \mid Q^d .\] In particular: \[ N(p - \alpha_j q) < Cq^{d\eps} .\] Therefore: $\exists \tilde{\alpha}_j$, $u_1, \ldots, u_r, b_1, \ldots, b_r \in \Zbb$ such that $p - \alpha_j q = \tilde{\alpha}_j u_1^{b_1} \cdots u_r^{b_r}$. Then \begin{align*} H(\tilde{\alpha}_j) &< C \cdot q^\eps \\ |b_j| &< C \cdot \log q \end{align*} Use $|p - \alpha_1 q| < q^{-(d - 1 - \eps)}$. Then $p - \alpha_j q$ is very close to $(\alpha_1 - \alpha_j) q$. Consider: $(\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) q$, which is similar to both of $(p - \alpha_2 q)(\alpha_1 - \alpha_3)$ and $(\alpha_1 - \alpha_2)(p - \alpha_3 q)$. Now more formally: \begin{align*} \left| 1 - \frac{(p - \alpha_2 q) (\alpha_1 - \alpha_3)}{(\alpha_1 - \alpha_2) (p - \alpha_3 q)} \right| &= \left| 1 - \frac{((p - \alpha_1 q) + (\alpha_1 - \alpha_2) q) (\alpha_1 - \alpha_3)}{(\alpha_1 - \alpha_2) ((p - \alpha_1 q) + (\alpha_1 - \alpha_3) q)} \right| \\ &< Cq^{-(d - \eps)} \end{align*} \[ \left| \frac{A - \kappa_1}{B - \kappa_2} - \frac{A}{B} \right| < \frac{\max(\kappa_1, \kappa_2)}{q} .\] $A \sim B \sim q$. Now use the proposition: \begin{align*} p - \alpha_2 q &= \tilde{\alpha}_2 u_1^{b_1} \cdots u_r^{b_r} \\ p - \alpha_3 q &= \tilde{\alpha}_3 w_1^{e_1} \cdots w_r^{e_r} \\ H(\tilde{\alpha}_2), H(\tilde{\alpha}_3) &\le C \cdot q^\eps \\ |b_1|, \ldots, |b_r|, |e_1|, \ldots, |e_r| &< C \cdot \log q \end{align*} Writing $\alpha^* = \frac{\tilde{\alpha}_2 (\alpha_1 - \alpha_3)}{\tilde{\alpha}_3 (\alpha_1 - \alpha_2)}$ we have: \[ |1 - \alpha^* u_1^{b_1} \cdots u_r^{b_r} w_1^{-e_1} \cdots w_r^{-e_r}| < Cq^{-(d - \eps)} .\] $H(\alpha^*) < C \cdot q^{2\eps}$. Take $\log$ to be the principal branch, that is $|\Im \log(\blank)| \le \pi$. Warning: $\log(xy) \neq \log(x) + \log(y)$ in general. This is Lipschitz around $1$, so we get \begin{align*} |\log(\alpha^*) + b_1 \log(u_1) + \cdots + b_r \log(u_r) - e_1 \log(w_1) - \cdots - e_r \log(w_r) + 2 k \cdot \ub{\log(-1)}_{=\pi i}| &< Cq^{-(d - \eps)} \end{align*} for a suitable $k \in \Zbb$, and $|k| < C \log q$. Reminder: \begin{theorem*} Let $n \in \Zbb_{\ge 1}$. Let $\alpha_1, \ldots, \alpha_n \in \ol{\Qbb}_{\neq 0}$, and let $\log \alpha_j$ be any choice of the $\log$ of $\alpha_j$. Let $b_1, \ldots, b_n \in \Zbb$ and let $\Lambda = b_1 \log \alpha_1 + \cdots + b_n \log \alpha_n$. Let \begin{align*} A_j &= \max(H(\alpha_j), \exp(|\log \alpha_j|), 10) \\ B^* &= \max \left( \frac{|b_1|}{\log A_n}, \ldots, \frac{|b_{n - 1}|}{\log A_n}, |b_n|, 10 \right) \end{align*} Then there exists an effective constant $C$ (a function of $n$ and the degree of $\Qbb(\alpha_1, \ldots, \alpha_n)$) such that $\Lambda \neq 0$ implies \[ |\Lambda| > \exp(-C\log(A_1) \cdots \log(A_n) \log(B^*)) .\] \end{theorem*} So the lower bound gives: We apply the theorem with $\alpha_n = \alpha^*$. $A_1, \ldots, A_{n - 1} < C$, $A_n < C \cdot q^{2\eps}$. $B^* \le \frac{C \log q}{\log A_n} \le \frac{C}{\eps}$. $|k| < C \log q$. So \[ |\Lambda| > \exp(-C \cdot \eps \log q \cdot \log \eps^{-1}) > q^{-C\eps\log \eps^{-1}} .\] We still need to consider $\Lambda = 0$. This is equivalent to: \[ 1 = \frac{(p - \alpha_2 q) (\alpha_1 - \alpha_3)}{(\alpha_1 - \alpha_2) (p - \alpha_3 q)} .\] Solving this equation gives $\alpha_2 = \alpha_3$ or $p = \alpha_1 q$. Neither is the case. If we use the weaker bound for $|\Lambda|$, then we would prove: \[ \left| \alpha - \frac{p}{q} \right| > C \cdot q^{-(d - \frac{\eps}{\log \log q})} . \qedhere \] \end{proof}