%! TEX root = DA.tex % vim: tw=50 % 29/11/2024 12PM ``generalised $S$-unit equations''. Let $K$ be a number field: $\mathcal{O}_K = \{x \in K : |x|_v \le 1 \text{ for all $v \in M_{K, f}$}\}$. Let $S \in M_K$ be a finite set containing $M_{K, \infty}$: $\mathcal{O}_{K, s} = \{x \in K : |x|_v \le 1 \text{ for all $v \notin S$}\}$ (``$S$-integers''). $\mathcal{O}_{K, s}^\times$ units in $\mathcal{O}_{K, s}$ (``$S$-units''). Unit eqution $x + y = 1$ with $x, y$ units. \begin{proof}[Proof (continued)] Induction on $d$. $d = 2$ was checked before. Suppose $d > 2$, and the claims hold for $d - 1$. We make some simplifying assumptions to be specified later. We apply the subspace theorem on $\Qbb^{d - 1} = V$. The reference basis is $\Lambda_j^{(0)} = X_j$, $j = 1, \ldots, d - 1$. As a first approximation, we try $\Lambda_j^{(v)} = X_j$ for all $j, v$. Let $S = \{\infty, 2, 3\}$. Let $x = (x_1, \ldots, x_d)$ be a solution of $L(x_1, \ldots, x_d) = 0$. Then \[ \prod_{v \in S} \prod_{j = 1}^{d - 1} |\Lambda_j^{(v)}(x)|_v = 1 .\] We can replace $\Lambda_1^{(w)}$ by \[ \frac{a_1}{a_n} X_1 + \cdots + \frac{a_{d - 1}}{a_d} X_{d - 1} ,\] where $L = a_1 X_1 + \cdots + a_d X_d$. Then we replace $|x_1|_w$ by $|x_n|_w$. We do this for some choice $w$. Now back to the simplifying assumptions: We assume that $|x|_\infty$ is maximal for $j = n$. Then $|x_n|_2 |x_n|_3 = |x_n|_\infty^{-1}$. So let $w \in \{2, 3\}$ such that $|x_n|_w \le |x_n|_\infty^{-\half}$. We may also assume $|x_1|_w = 1$. For this, we may need to divide $x$ by the common divisor, and rearrange the indices. For these augmented $\Lambda_j^{(v)}$'s, we get \[ \prod_{v \in S} \prod_{j = 1}^{d - 1} |\Lambda_j^{(v)}(x)|_v \le |x_n|_\infty^{-\half} \le H(\Lambda_1^{(0)}(x), \ldots, \Lambda_{d - 1}^{(0)}(x))^{-\half} .\] So the subspace theorem applies with $\eps = \half$. So $x_1, \ldots, x_{d - 1}$ satisfies one of finitely many linear equations. Apply the induction hypothesis for each of them. \end{proof} \begin{theorem} For all $\eps > 0$, there exist finitely many multiplicatively independent pairs $a, b \in \mathcal{S}$ such that \[ \gcd(a - 1, b - 1) > \max(a, b)^\eps .\] \end{theorem} \begin{proof} Fix some $\eps > 0$. Let $a, b \in \mathcal{S}$ multiplicatively independent and such that \[ d = \gcd(a - 1, b - 1) > \max(a, b)^\eps .\] Our goal is to show $d < C$ for some $C = C(\eps)$. Note: $2, 3 \nmid d$, because otherwise $2 \nmid a, b$ or $3 \nmid a, b$. Then $a$ and $b$ would be a power of the same prime. Not possible due to multiplicative independence. Fix some $n \in \Zbb_{>0}$ sufficiently large depending on $\eps$. We apply the subspace theorem on $V = \Qbb^{n^2} / \{(x, \ldots, x) : x \in \Qbb\}$. We will evaluate our functionals at the point $e / d = (e_1 / d, \ldots, e_{n^2} / d)$ where $e_1, \ldots, e_{n^2}$ is an enumeration of $a^k b^l$ for $k = 0, \ldots, n - 1$, $l = 0, \ldots, n - 1$ such that $e_1 = 1$, $e_{n^2} = a^{n - 1} b^{n - 1}$. Note: $\frac{e_i}{d} - \frac{e_j}{d} \in \Zbb$. This is because $e_i \equiv 1 \pmod d$. Also: $\left| \frac{e_i}{d} - \frac{e_j}{d} \right|_v \le \min \left( \left| \frac{e_i}{d} \right|_v, \left| \frac{e_j}{d} \right|_v \right)$ for all $v \in S = \{\infty, 2, 3\}$. The coordinates on $\Qbb^{n^2}$ will be denoted by $Y_1, \ldots, Y_{n^2}$. All our linear forms on $V$ will be of the form $Y_i - Y_j$ for some $i \neq j$. This is indeed well defined on $V$. Reference basis $\Lambda_j^{(0)} = Y_j - Y_{n^2}$. \[ H\left(\Lambda_1^{(0)} \left( \frac{e}{d} \right), \ldots, \Lambda_{n^2 - 1}^{(0)} \left( \frac{e}{d} \right) \right) \le a^n b^n .\] For $v = \infty$: \begin{align*} \Lambda_j^{(\infty)} &= Y_{j + 1} - Y_1 \\ |\Lambda_j^{(\infty)}(e / d)| &= |e_{j + 1} / d|_{\infty} \\ \Lambda_j^{(v)} &= Y_{j} - Y_{n^2} \\ |\Lambda_j^{(v)}(e / d)|_v &= |e_j|_v \\ \prod_{j = 1}^{n^2 - 1} |\Lambda_j^{(\infty)}(e / d)|_\infty &\le \left( \prod_{j = 1}^{n^2} |e_j / d|_\infty \right) \cdot d \\ \prod_{j = 1}^{n^2 - 1} |\Lambda_j^{(v)}(e / d)|_v &\le \left( \prod_{j = 1}^{n^2} |e_j / d|_v \right) / |a^{n - 1} b^{n - 1}|_v \\ \prod_{v \in S} \prod_{j = 1}^{n^2 - 1} |\Lambda_j(e / d)| &\le d \cdot (a^{n - 1} b^{n - 1}) \cdot d^{-n^2} \\ |e_i / d|_\infty |e_j / d|_2 |e_j / d|_3 &= \frac{1}{d} \end{align*}