%! TEX root = DA.tex % vim: tw=50 % 27/11/2024 12PM \begin{theorem*}[1] If $2, 3 \nmid q$, then \[ \frac{\ord(q)}{(\log q)^2} \to \infty .\] \end{theorem*} \begin{theorem*}[2] For all $\eps > 0$, there are only finitely many pairs of multiplicatively independent $a, b \in \mathcal{S}$ such that \[ \gcd(a - 1, b - 1) > \max(a, b)^\eps .\] \end{theorem*} \begin{proof}[Proof of Theorem 1 using Theorem 2] Let \[ \Lambda = \{(n, k) \in \Zbb^2 : 2^n \cdot 2^k \equiv \pmod{q}\} .\] This is a subgroup of $\Zbb^2$, and $|\Zbb^2 / \Lambda\ = \ord(q)$ The volume $\Rbb^2 / \Lambda$ is $\ord(q)$. Our aim is to find $(n_1, k_1), (n_2, k_2) \in \Lambda \cap \Zbb_{\ge 0}^2$ linearly idnependent and $n_1, k_1, n_2, k_2 \le C \ord(q) / \log q$, where $C$ is absolute. If we can do this, then: $q \mid \gcd(2^{n_1} 2^{k_1} - 2^{n_2} 3^{k_2} - 1)$. By Theorem (2), since $2^{n_1} 3^{k_1} - 1$ and $2^{n_2} 3^{k_2} - 1$ are multiplicatively independent, we would get \begin{align*} q &< \max(2^{n_1} 3^{k_1}, 2^{n_2} 3^{k_2})^\eps \\ &< \exp(C \ord(q) / \log q)^\eps \end{align*} Taking $\log$: \begin{align*} \log q &< C \cdot \eps \ord(q) / \log q \\ \ord(q) &> C^{-1} \cdot \eps^{-1} \cdot (\log q)^2 \end{align*} provided $q$ is sufficiently large in terms of $\eps$. Now to the proof of the above stated aim: Let $(\tilde{n}_1, \tilde{k}_1), (\tilde{n}_2, \tilde{k}_3 \in \Lambda$ that generate $\Lambda$ and such that their angle is as close to $\frac{\pi}{2}$ as possible. Then this angle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$: \begin{center} \includegraphics[width=0.6\linewidth]{images/d84f7ea40554416b.png} \end{center} The area of the parallelogram spanned by $(\tilde{n}_1, \tilde{k}_1)$ and $(\tilde{n}_2, \tilde{k}_2)$ is at least \[ \frac{2}{\sqrt{3}} \|(\tilde{n}_1, \tilde{k}_1)\|_2 \|(\tilde{n}_2, \tilde{k}_2)\|_2 \le \ord(q) .\] Minkowski's second theorem in the geometry of numbers. We know that $q \mid 2^{|\tilde{n}_1|} \cdot 3^{|\tilde{k}_1|} - 1$ or $q \mid 2^{|\tilde{n}_1|} - 3^{|\tilde{k}_1|}$. Then: either $|\tilde{n}_1|$ or $|\tilde{k}_1|$ has to be $\ge \half \log_3(q)$. In particular: $\|(\tilde{n}_1, \tilde{k}_1)\|_2 \ge c \log q$ (for some absolute constant $c$). Then $\|(\tilde{n}_1, \tilde{k}_1)\|_2, \|(\tilde{n}_2, \tilde{k}_2)\|_2 \le c \frac{\ord(q)}{\log q}$. \end{proof} \begin{proposition} Let $L \in \Qbb[X_1, \ldots, X_n]$ be a linear form. Then there exists $C = C(L)$ such that any solution $x_1, \ldots, x_n \in \mathcal{S}$ of $L(x_1, \ldots, x_n) = 0$ satisfies \[ |x_i - x_i|_\infty |x_i - x_j|_2 |x_i - x_j|_3 < C \tag{$*$} \] for some $i \neq j \in \{1, \ldots, n\}$. \end{proposition} \begin{remark*} For $x \in \Zbb$ such that $x = 2^n 3^k y$ with $n, k \in \Zbb_{\ge 0}$, $2, 3 \nmid y$, then \[ |x|_\infty |x|_2 |x|_3 = |y| .\] Note that $(*)$ is invariant under multiplication by elements of $\mathcal{S}$. \end{remark*} \begin{theorem*} Let $V$ be a vector space of dimension $n$ over $\ol{\Qbb}$. Let $S \subset M_\Qbb$ be finite with $\infty \in S$. For each $v \in S$, let $\Lambda_1^{(v)}, \ldots, \Lambda_n^{(v)}$ be a basis of $V^*$. Furthermore, let $\Lambda_1^{(0)}, \ldots, \Lambda_n^{(0)}$ be another basis. Fix an extension of each $|\bullet|_v$ from $\Qbb$ to $\ol{\Qbb}$. Then for all $\eps > 0$, there are finitely many $\varphi_1, \ldots, \varphi_n \in V^*$ such that all solutions $x \in V$ of \[ \prod_{v \in S} \prod_{j = 1}^{n} |\Lambda_j^{(v)}(x)|_v \le H(\Lambda_1^{(0)}(x), \ldots, \Lambda_n^{(0)}(x))^{-\eps} \] with $\Lambda_1^{(0)}(x), \ldots, \Lambda_n^{(0)}(x) \in \Zbb$ satisfy $\varphi_i(x) = 0$ for some $i = 1, \ldots, n$. \end{theorem*} \begin{proof}[Proof of Proposition] By induction on $n$. Suppose $n = 2$. As we observed the conclusion, is invariant under dividing $x_1, x_2$ by the same element of $\mathcal{S}$. Now $\gcd(x_1, x_2) \in \mathcal{S}$. So it is enough to prove for solutions with $\gcd(x_1, x_2) = 1$. Let $L(X_1, X_2) = aX_1 + bX_2$. Then $ax_1 + bx_2 = 0$ with $\gcd(x_1, x_2) = 1$ implies $x_1 \mid b$ and $x_2 \mid a$. So there are finitely many possibilities for $x_1, x_2$ in terms of $L$. Pick $C$ that works for all. (to be continued). \end{proof}