%! TEX root = DA.tex % vim: tw=50 % 25/11/2024 12PM \begin{lemma*} Let $f, P \in \Zbb[X, Y]$ without common factors in $\Zbb[X, Y]$. Then the system of equations $f(X, Y) = P(X, Y) = 0$ has only finitely many solutions. \end{lemma*} \begin{proof} $\Zbb[X, Y] \cong \Zbb[X][Y]$ (poynomials in $Y$ with coefficients in $\Zbb[X]$). $f, P$ have no common factors in $\Zbb[X][Y]$. Then Gauss's lemma gives us that they have no common factors in $\Qbb(X)[Y]$. This is because $\Zbb[X]$ is a UFD and $\Qbb(X)$ is its quotient field. Since $\Qbb(X)[Y]$ is a Euclidean domain, there exists $F, G \in \Qbb(X)$ such that \[ F \cdot P + G \cdot f = 1 .\] Multiply by the common denominator $D$ of $F, G$, and we get \[ \tilde{F} \cdot P + \tilde{G} \cdot f = D(X) \] for some $\tilde{F}, \tilde{G} \in \Zbb[X]$. Hence the common solutions of $f = P = 0$ has finitely many $X$-coordinates. Then swap $X$ and $Y$. \end{proof} \begin{theorem*} Let $F \in \Zbb[X, Y]$ homogeneous of degree $d$, without repeated factors. Let $G \in \Zbb[X, Y]$ of degree $< d$. Assume $F - G$ is irreducible in $\Zbb[X, Y]$. Then there are at most finitely many solutions of $F(X, Y) = G(X, Y)$ with $X, Y \in \Zbb$. \end{theorem*} $F(X, Y) = (X - \alpha_1 Y) \cdots (X - \alpha_d Y)$. $\Gamma = \Gamma_0 \cup \Gamma_1 \cup \cdots \cup \Gamma_d$. $P = F - G$, $I = P \cdot \ol{\Qbb}[X, Y]$. $V = \ol{\Qbb}[X, Y]^{(D)} / I \cap \ol{\Qbb}[X, Y]^{(D)}$. $\ord_{p_j}(f) = \sup(t \in \Zbb : f(X, Y) \cdot Y^t \text{ bounded on $\Gamma_j$})$. $n = \dim V$. $\forall j \exists l_1, \ldots, l_n \in V$ a basis such that $\ord_{p_j}(l_i) \ge -D + i - 1$. $n = \dim V > dD - d(d - 1)$. \textbf{Subspace Theorem:} Let $V$ be a vector space of dimension $n$ over $\ol{\Qbb}$. Let $l_1, \ldots, l_n$, $l_1^{(0)}, \ldots, l_n^{(0)} \in V$ be two bases. $\forall \eps > 0$ there exists $f_1, \ldots, f_m \in V_{\neq 0}$ such that $\forall \varphi \in V^*$ that satisfies \[ \prod_{i = 1}^{n} |\varphi(l_j)| \le H(\ub{\varphi(l_1^{(0)})}_{\in \Zbb}, \ldots, \ub{\varphi(l_n^{(0)})}_{\in \Zbb})^{-\eps} \] then $\varphi(f_j) = 0$ for some $j = 1, \ldots, m$. \begin{proof}[Proof of Schinzel's Theorem] We show that $\Zbb^2 \cap \Gamma_j$ is finite for any $j = 1, \ldots, d$. Let $l_1, \ldots, l_n \in V$ be a basis with $\ord(l_i) \ge -D + i - 1$. Then \begin{align*} \prod_{i = 1}^{n} |l_i(X, Y)| &\le C \cdot Y^{\sum -\ord_{p_j}(l_i)} &&\text{on $\Gamma_j$} \\ &\le C \cdot Y^{-D - 1} \end{align*} if $n \ge 2D + 2$. We set $D$ to be large enough so that this holds. Recall the reference basis $l_j^{(0)}$ are suitable monomials of degree $\le D$, so \[ |l_i^{(0)} (X, Y)| < CY^D .\] Then for $x, y \in \Zbb^2 \cap \Gamma_j$, we have: \[ H(l_i^{(0)}(x, y), \ldots, l_n^{(0)}(x, y)) \le C \cdot |Y|^D .\] Hence \[ \prod_{i = 1}^{n} |l_i(x, y)| < H(l_1^{(0)}(x, y), \ldots)^{-1} \] provided $y$ is still large. By the subspace theorem, $f_i(x, y) = 0$ for some $i = 1, \ldots, m$. To apply the lemma, we need $f_i \in \Zbb[X, Y]$. This can be assumed: indeed, multiplying $f_i$ by an element of $\ol{\Qbb}$, we can make the leading coefficient to be in $\Zbb$, and all other coefficients will be algebraic integers. Then replace $f_i$ by the sum of its Galois conjugates. \end{proof} \begin{theorem*} For $q \in \Zbb_{> 0}$ with $\gcd(q, 6) = 1$, we write $\ord(q)$ for the order of the multiplicative group generated by $2, 3$ in $\Zbb / q\Zbb$. Then: \[ \lim_{q \to \infty} \frac{\ord(q)}{(\log q)^2} = \infty .\] \end{theorem*} \begin{remark*} $2^n 3^m$ for $n < \half \log_2 q$, $m < \half \log_3 q$. Hence \[ \ord(q) \ge \left( \half \log_2 q \right) \left( \half \log_3 q \right) .\] \end{remark*} \begin{theorem*}[Corvaja, Zannier; Hern\'andez, Luca] Write $\mathcal{S} = \{2^n 3^m : n, m \in \Zbb_{\ge 0}\}$. Then for all $\eps > 0$, there are only finitely many pairs of multiplicatively independent $a, b \in \mathcal{S}$ such that \[ \gcd(a - 1, b - 1) \ge \max(a, b)^\eps .\] \end{theorem*} $a, b$ are multiplicatively independent if there does not exist $n, m \in \Zbb$ such that $a^n = b^m$. \textbf{Fact:} there exist infinitely many $n$ such that \[ \gcd(2^n - 1, 3^n - 1) \ge 3^{n^{c / \log \log n}} .\]